
1. If the ground state energy of H-atom is 13.6 eV, the energy required to ionize an H-atom from second excited state is :					
A. 1.51 eV	B. 3.4 eV	C. 13.6 eV	D. 12.1 eV		
2. The binding energy p	per nucleon is maximum	in case of:			
A. 2He ⁴	B. $_{26}\text{Fe}^{56}$	C. ₅₆ Ba ¹⁴	D. $_{92}U^{23}$		
3. The energy of a photo	on of wavelength λ is :				
A. hc λ	B. hc/λ	C. λ/hc	D. $h\lambda/c$		
4. Radio waves of const	tant amplitude can be ge	nerated with:			
A. rectifier	B. filter	C. FET	D. oscillator		
5. Great bear is a					
A. Star	B. Galaxy	C. Constellation	D. Planet		
6. Monoclinic crystal la	attice has dimensions				
A. $\alpha = \beta = \gamma$		B. $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$			
C. $\alpha \neq \beta \neq \gamma$		D. None of these			
7. Which of the following	ng relations is correct?				
	$B. E^2 = p^2 c$	C. $E^2 = p^2 c^2$	D. $E^2 = p^2/c^2$		
8. During nuclear disint	tegration, the following i	s true			
A. mass in conserved		B. energy is conserved			
C. kinetic Energy is cor	nserved	D. momentum is conser	ved		
9. The nucleus forces ar	re				
A. charge-dependent	B. spin-dependent	C. charge-symmetric	D. long range		
10. During radio-active	decay, the negative char	ged particle is emitted be	ecause of		
A. X-rays		B. β emissions			
C. Transmutation of net	utron into proton	D. None of these			
11. Particle in β - decay	is				
A. Neutron	B. Proton	C. Electron	D. Photon		
12. Energy in stars is pr	oduced by				
A. fusion	B. fission	C. radioactive decay	D. artificial		
			transmutation		

13. Atomic packing fraction in bcc lattice is

A. $1/\sqrt{\pi}$	B. $\sqrt{\pi}$	C. $\pi / \sqrt{2}$	D. None of these
14. The count of α - par radioactive element wil	rticles decreases from 28 1 be	,800 to 1,800 in 48 hour	s, the half-life of this
A. 4 hours	B. 8 hours	C. 12 hours	D. 16 hours
	be maximum in the case		4
A. He ³	B. He ²	C. H ²	D. He ⁴
	nucleon in heavy nuclei		
A. 8 MeV	B. 8 eV	C. 80 eV	D. 80 MeV
17. Complete the series	$He^6> e + Li^6 + ?$		
A. nutrino	B. anti-nutrino	C. proton	D. neutron
18. Line spectrum can b	be obtained from		
A. Sun	B. Candle	C. Mercury Vapour Lamp	D. Electric Bulb
19. What is radius of 1s A. 0.53 x 10 ⁻¹⁰ cm C. 2.73 x 10 ⁻¹⁰ cm	st Bohr's orbit in a Hydro	gen atom ? B. 0.53 x 10 ⁻⁸ cm D. 2.73 x 10 ⁻¹² cm	
20. What is the energy of A13.6 eV	of an electron of Hydrog B. 0	en in its ground state? C. infinity	D. 13.6 eV
21. What is the rest mas	ss of a photon ?		
A. 0	B. 13.6 eV	C. 1 MeV	D. $3.1 \times 10^{-27} \text{ kg}$
22. Two lenses of power	ers $12D$ and - $2D$ are place	ced together, the combine	ed focal length will be
A. 1 cm	B. 10 cm	C. 100 cm	D. 1000 cm
23. The critical angle is	maximum when light tra	avels from	
A. water to air	B. glass to air	C. glass to water	D. air to water
24. A rider on a horse b	eack falls forward when t	he horse suddenly stops. B. inertia of rider	This is due to
C. large weight of the h	orse	D. losing of the balance	,
25 Fundamental martial	lo in an alastra massastis	wove is	
A. photon	le in an electro-magnetic B. electron	C. phonon	D. proton
1		1	1

26. The wavelength is	least in case of		
A. γ -rays	B. X-rays	C. infrared	D. ultraviolet
27. The speed of electronic	ro-magnetic radiation in	vacuum is	
A. $\mu_0 \epsilon_0$	B. $\sqrt{(\mu_0 \epsilon_0)}$	C. $1/\mu_0 \ \epsilon_0$	D. $1/\sqrt{(\mu_0 \epsilon_0)}$
28. Power factor in LC	Coscillations is		
A. 0	B. 1	C. 1/4	D. $1/\sqrt{2}$
29. 220 V is changed t what is the current in t	to 2,200 V through a step he secondary?	-up transformer. Th curr	ent in primary is 5 A,
A. 5 A	B. 50 A	C. 0.5 A	D. 500 A
30. When a bar is plac A. Dimagnetic C. Paramagnetic	ed near a strong magnet,	it is repelled, then the m B. Ferromagnetic D. Anti-ferrimagnetic	aterial of the bar is
31. Electron enters into	o a magnetic field at an a	ngle of 60°, its path will	be
A. straight line	B. circle	C. parabola	D. helix
32. One electron is mo	oving in electric and mag	netic fields, it will gain e	energy from:
A. electric field	B. magnetic field	C. both of these	D. none of these
33. Force acting on a conthe magnetic field of 1	conductor of length 5 m c .5 tesla is	carrying current 8 ampere	es kept perpendicular to
A. 10 N	B. 100 N	C. 15 N	D. 50 N
34. If $E = at - bt^3$, the	neutral temperature is		
A2a/b	B2b/a	C. $\sqrt{(a/3b)}$	Db/2a
35. The charge carrier	s in an electrolyte are		
A. negative ions	B. positive ions	C. both A and B	D. none of these
-	stors are connected in ser r dissipated through any	•	
A. 40 W	B. 10/3 W	C.90W	D.10W
37. Cell of emf 1 volt be the balancing length	<u> </u>	entiometer, balancing lea	ngth is 600 cm. What will
A. 400 cm	B. 600 cm	C. 1500 cm	D. 1200 cm

B. R/9	C. 3 R	D. R/3		
in super-conductors are	B. protons D. photons			
		capacitance of a single		
B. 1:8	C. 8:1	D. 1:2		
n a uniform electric field	l, its potential energy wil	ll be minimum when the		
Β. π	C. π /2	D. 2π		
aced at the centre of a cub	be of volume 8 cc, what i	is electric flux passing		
B. $(1/2) \varepsilon_0$	C. $2/\epsilon_0$	D. $3/\epsilon_0$		
C. 1.6 x 10 ⁻ D. 1.6 x 10 ⁻¹⁶ J	r.			
-		ade 3 times and length		
B. 3n	C. √3 n	D. 3√3 n		
	-	-		
46. A person is standing on a railway platform and a train is approaching, what is the maximum wavelength of sound he can hear? Given wavelength of whistle = 1 m; speed of sound in air = 330 m/s; speed of the train = 36 km/hr.				
B. 32/33 m	C. 33/32 m	D. 12/13 m		
47. Velocity of sound in open-ended tube is 330 m/s , the frequency of waves is 1.1 kHz and the length of tube = 30 cm , which harmonic will it emit?				
=	<u> </u>	vaves is 1.1 kHz and the		
	in super-conductors are are combined to form a legle small drop will be in B . 1:8 In a uniform electric field and field is B . π Indeed at the centre of a cubic B . (1/2) ϵ_0 If C . 1.6 x 10 ⁻¹ D. 1.6 x 10 ⁻¹⁶ J If C and C are a sonometer wire increased 3 times, what is C and C are a sonometer wire increased 3 times, which is C and C are a sonometer wire increased 3 times, which is C and C are a sonometer wire increased 3 times, which is C and C are a sonometer wire increased 3 times, which is C and C are a sonometer wire increased 3 times, which is C and C	in super-conductors are B. protons D. photons are combined to form a bigger single drop. The oragle small drop will be in the ratio B. 1:8 C. 8:1 In a uniform electric field, its potential energy will and field is B. π C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the centre of a cube of volume 8 cc, what is C. $\pi/2$ Inceed at the ratio $\pi/$		

A. heat	B. couple	C. energy	D. volume		
60. Gravel :	is dropped o keep the bel	on to a conve It moving at	eyor belt at a 2 ms ⁻² is	rate of 0.5Kg s ⁻² . The ex	tra force in Newton
A. 1		B. 2		C. 4	D. 5
61. An elen	nent with ato	omic number	r 20 is		
A. an alkali metal	B. an alkaline earth metal	C. a halogen	D. a noble gas		
62. When s	upercooled	water sudder	nly freezes, t	he free energy of the sys	tem
A. increase	-	B. decrease	•	C. remains same	D. becomes zero
63. The der	nsity of neor	n is highest a	t		
A. STP		B. 0°C, 2 a	tm	C. 273°C, 1 atm	D. 273°C, 2 atm
64. Cadmiu	ım in a nucl	ear reactor a	cts as		
A. nuclear	fuel			B. neutron absorber	
C. a modera	ator			D. neutron liberator to s	start the chain
65. The end	d product of	4π series		200	204
A. ₈₂ Pb ²⁰³		B. ₉₂ Pb ²⁰⁷		C. 82Pb ²⁰⁸	D. ₈₂ Bi ²⁰⁴
(C II	.1.1.1	1!4!			1 -4 :-
	giodin is a c		compound 1	n which the central meta	
A. iron	11.0	B. cobalt		C. sodium	D. manganese
67. The ele			s to the fami	ly of	
A. actinide	B. alkaline		D. alkali		
series	earth	lanthanide			
	family	series	family		
69 The col	ourad disah	orgo tubo for	· advertiseme	onte contoin	
	oured disch	•	advertiseme	C. helium	D. neon
A. argon		B. xenon		C. Hellulli	D. Heoli
69 Which	of the folloy	ving is the st	rongest base	?	
A. PH ₃	or the rollov	B. AsH ₃	rongest oase	C. NH ₃	D. SbH ₃
71. 1113		D. 713113		C. 1411 ₃	D. 50113
	aro reaction	is not given	by		
A.		B. Acetaldo	ehvde	C. Benzaldehyde	D. Formaldehyde
Triethylace	taldehyde		- J	,	, , , , , , , , , , , , , , , , , , ,
71 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	of 41 of - 11		m4a ia = -4.4	a famalachal-0	
		_		e for alcohols?	
			ent and stron	_	
				lso increases	
(Lower a	Icohols are v	water insolul	nle and their	solubility increases with	molecular weight

D. Lower alcohols are water insoluble and their solubility decreases with molecular weight				
A. Primary alcohol73. A compound of mo	n heated with CH ₃ CH ₂ C B. Secondary alcohol blecular formula C ₃ H ₈ O o C ₃ H ₆ O ₂ . The original con	C. Tertiary alcohol on oxidation gives a	D. Acetone	
A. Primary alcohol B. Secondary alcohol	C. D. Tertiary Aldehyde alcohol	,		
•	er of size of F ⁻ , Cl ⁻ , Br ⁻ B. I ⁻ < Cl ⁻ < Br ⁻ < F ⁻		D. Br $^{-}$ < Cl $^{-}$ < F $^{-}$ < I $^{-}$	
75. Which of the follow A. NH ₃ , H ₂ O, AlCl ₃	wing series contains only B. NH ₃ , ROH, H ₂ O	<u>*</u>	D. None of these	
76. The formula of ace A. CH ₃ COCH	tonitrite is B. CH ₃ CN	C. CH ₃ CH ₂ CN	D. CH ₃ CONH ₂	
77. The IUPAC name of A. Propionaldehyde		C. Ethanamide	D. Ethylamine	
A. threshold energy inc C. effective collision in 79. If the graph of cond	ncreases centration of A versus reaction is a straight line action is	B. kinetic energy of mo D. none of the above	olecules increases	
-	of hydrogen peroxide 2 B. first order reaction	$H_2O_2 \rightarrow 2H_2O + O_2$ is C. second order reaction	D. third order reaction	
81. The half-life period A. 0.8 min	d of a first order process B. 3.2 min	is 1.6 min ⁻¹ . It will be 90 C. 5.3 min	0% complete in D. 1.6 min	
82. Which of the follow A. AlCl ₃	wing is an electrophile? B. CN	C. NH ₃	D. CH ₃ OH	
83. Molarity of a solution is the number of A. moles of solute per litre of solution B. moles of solute per 100 gm of the solution C. gram molecular weight of solute dissolved per litre of the solution				

D. gram eq	uivalents of	solute dissolved per litre	e of solution	
A. sp^3		n PF ₃ is B. sp ² ving is present in DNA? C. D. None of Riboflavin these	C. dsp ³	D. d^2sp^3
86. Propyn A. Acetone		ed with H ₂ SO ₄ in presen B. Propionaldehyde	ce of HgSO ₄ gives C. Acetaldehyde	D. Propanoic acid
87. The gen A. C _n H _{2n+1}		a for alkyne is B. CnH _{2n}	C. C_nH_{2n-2}	D. C _n H _n
88. Mesotartaric acid is optically inactive due to the presence of A. molecular symmetry B. molecular asymmetry C. external compensation D. two asymmetric carbon atoms				•
alkali meta	ls?	ving electronic configura B. $(n - 1) s^2 p^6 d^{10} ns^1$		ell is characteristic of D. ns ² p ⁶ d ¹
A. cold war 91. When a solution acc A. a soluble	copper wire quires blue copper B. Cu ⁺ ions	B. hot water is placed in a solution of colour. This is due to the		D. acetic acid
92. The pyrites are heated with hydrochloric acid. The solution so obtained will give blood red colour with				
A. $K_4Fe(C)$	N/6	B. KCN	C. $K_3Fe(CN)_6$	D. KSNC
93 The ignition mixture in alumino thermite pro A. magnesium powder and BaO ₂ C. magnesium and aluminium powders		B. magnesium powder, aluminium powder and BaO ₂ D. magnesium and aluminium oxides		

94. One of the most im	portant use of quick lime	e is	
A. as a purgative	B. drying gases and alcohols	C. in bleaching silk	D. dyeing cotton
95. In preparing Cl ₂ from	om HCl, MnO ₂ acts as a/s	an	
A. dehydrating agent		C. catalytic agent	D. oxidising agent
96. Seaweed is an impo	ortant source of		
A. chlorine	B. iodine	C. fluorine	D. bromine
97. Nitrates of all meta	ls are		
A. unstable B. stable	C. coloured D. soluble		
98 Ostwald's method i	is used for manufacture o	of	
A. HNO ₃	B. NO ₂	C. NO	D. P ₂ O ₅
00 Magnasium ragats	with saids producing by	lrogen and germannedin	a magnasium salta In
such reactions, magnes	with acids producing hyd sium undergoes	rogen and corresponding	g magnesium saits. m
A. oxidation	C	B. reduction	
C. neither oxidation no	r reduction	D. simple dissolution	
		•	
100. An acidic buffer s	olution can be prepared	by mixing solution of	
A. ammonium chloride	and HCl	B. H ₂ SO ₄ and Na ₂ SO ₄	
C. acetic acid and sulpl	huric acid	D. ammonium acetate	and acetic acid
101. Which of the follo	owing is not a Lewis acid	1?	
A. BF ₃	B. AlCl ₃	C. SnCl ₄	D. CCl ₄
-	-	·	
102. Equal weights of a fraction of total pressur	methane and oxygen are	mixed in an empty conta	niner at 25°C. The
A. 1/2	B. 1/3	C. 2/3	D. 1/3 x (273/298)
	a sealed tube at 440°C til		D. 1/3 X (2/3/296)
	to be 22% decomposed.	_	ıt
for dissociation is	to be 2270 decomposed.	The equinorium constant	••
A. 0.282 B. 1.99	C. 0.0199 D. 0.0796		
104 The moler heat of	vaporisation Δ H _{vap} for v	vyotom is 2070, sol mol ⁻¹	thanafana malan haat af
condensation of water		water is 2079 car mor,	mererore, morar near or
A. + 2079 cal mol ⁻¹	15	B 2079 cal mol ⁻¹	
C. greater than 2079 ca	nl mol ⁻¹	D. smaller than 2079 c	al mol ⁻¹
510ater than 2017 co		2. Siliulioi tiluli 2017 C	wi 11101
105. Which of the follo	owing is an insulator?		
A. Diamond	B. Graphite	C. Aluminium	D. Silicon
106. The purest coal is			

A. Anthracite	B. Bituminous	C. Peat	D. Lignite
107. Among N ³⁻ , O ²⁻ , A. N ³⁻	F ⁻ , and Na ⁺ , which one B. O ²⁻	has largest size? C. F	D. Na ⁺
108. Ni, Pt, Pd belong	to which group of the per	riodic table?	
A. 12th	B. 14th	C. 8th	D. 10th
proportion at STP is ex of components in the au B. 50 ml or	ml of dry hydrogen and o ploded in an audiometer udiometer immediately a f	. What will be the nature	
A. 50 ml of steam and steam only 50 ml of hydrogen			
C. 50 ml of D. 100 ml			
steam and of steam			
50 ml of and 50 ml			
oxygen of oxygen			
110. If 9.8 gm of hexar A. 6	ne bums completely in ox B. 0.6	xygen, how many moles C. 0.9	of CO ₂ is produced? D. 1.2
111. Which one of the	following nitrates does n	ot give NO ₂ on heating?	
A. NaNO ₃	B. $Pb(NO_3)_2$	$C. AgNO_3$	D. $Cu(NO_3)_2$
110 Which has larvest	1.4 I D 9		
112. Which has lowest A. N	B. Be	C. B	D. C
A. N	D. De	С. Б	D. C
113. The oxidation stat	es of phosphorus vary from	om	
A. $- 3 \text{ to } + 5$	B 1 to + 1	C. $- 3 \text{ to} + 3$	D. -5 to $+1$
114. The molecular vel	ocity of any gas is	.	
A. proportional to the a	-	B. proportional to the s temperature	quare of the absolute
C. proportional to the s	quare root of the	D. independent of the a	bsolute temperature
absolute temperature	owing is an endothermic	-	-
reaction?	owing is an endomermic		
A. 2H ₂ +			
$O_2 \rightarrow B. N_2 O_2 \rightarrow$	•		
$2H_2O$ 2NO			
C. 2NaOH D. C ₂ H ₅ OH	ł		
$+ H_2SO_4 \rightarrow + 3O_2 \rightarrow$			
$Na_2SO_4 = 2CO_2 +$			

A.
$$2y - 3x - 2 = 0$$

B.
$$3x + 2y - 2 = 0$$

C.
$$3x + 2y - 63 = 0$$

D. none of the above

129. The parabola
$$y^2 = 4ax$$
 passes through the point $(2, -6)$, then the length of its latus rectum is A. 9 B. 16 C. 18 D. 6

130. The equation of the conic with focus at (1, -1) directrix along x - y + 1 = 0 and with eccentricity $\sqrt{2}$ is

A.
$$xy = 1$$

B.
$$2xy + 4x - 4y - 1 = 0$$
 C. $x^2 - y^2$

D.
$$2xy - 4x + 4y + 1 = 0$$

131. If the radical axis of the circles $x^2 - y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^2 + y^2 + 2x + 2y + 1 = 0$, then

A.
$$g = 3/4$$
 or $f = 2$

B.
$$g \ne 3/4$$
 and $f = 2$

C.
$$g = 3/4$$
 or $f \neq 2$

D. none of the above

132. If $\tan \theta + \sec \theta = \sqrt{3}$, $\theta < \pi$, then θ is equal to or least positive value of θ is

A.
$$5\pi/6$$

B.
$$2\pi/3$$

C.
$$\pi/6$$

D.
$$\pi/3$$

133. The roots of the equation $4x^2 + 2\sqrt{5}x + 1 =$

134. From the bottom of a pole of height h, the angle of elevation of the top of a tower is α . The pole subtends an angle β at the top of a tower. The height of the tower is

A. [h sin
$$\alpha$$
 sin(α -

B. [h sin
$$\alpha$$
 cos(α +

C. [h sin
$$\alpha$$
 cos(α -

D. [h sin α sin(α +

$$\beta$$
)]/sin β

$$\beta$$
)]/cos β

$$\beta$$
)]/sin β

 β)]/cos β

135. If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta)$, then the value of $\cos(\theta + \pi/4)$ is

A.
$$2/\sqrt{2}$$

$$\hat{B}$$
. $1/\sqrt{2}$

C.
$$-1/\sqrt{2}$$

D. $1/2/\sqrt{2}$

136. If $4 \le x \le 9$, then

A.
$$(x - 4)(x - 9) \le 0$$

B.
$$(x - 4)(x - 9) \ge 0$$

B.
$$(x-4)(x-9) \ge 0$$
 C. $(x-4)(x-9) < 0$

D.
$$(x - 4)(x - 9) > 0$$

137. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an intercept on y-axis equal to

138. If α and β are the roots of the equation $x^2 - p(x+1) - q = 0$, then the value of $[(\alpha^2 + 2\alpha + 1) - q = 0]$ 1)/ $(\alpha^2 + 2\alpha v + q)$] + $[(\beta^2 + 2\beta + 1)/(\beta^2 + 2\beta + q)]$ is

139. For $x \in R$, if $mx^2 - 9mx + 5m + 1 > 0$, then m lies in the interval

140. If a, b, c are positive real numbers, then the number of real roots of the equation $ax^2 + b x + c = 0$ is				
A. 0	B. 2	C. 4	D. none of the above	
141. If $a^x = b^y = c^z$ and a A. G.P.	a, b, c are in G.P., then x B. A.P.	, y, z are C. H.P.	D. none of the above	
	what b do the roots of the	•		
A. $\sqrt{3/2}$	B. 1/2	C1	D. none of the above	
	the expansion of $(1 - 3x)$			
A. 5/24	B. 4/25	C. 24/25	D. 25/24	
144. If C (10, 4) + C (10	(0, 5) = C(11, r), then r ed	quals		
A. 6	B. 5	C. 4	D. 3	
145. In a steamer, there and there are cows, horse than 12 of each) ready to number of ways in which made is A. ¹² C ₃ B. ¹² P ₃	o be shipped. The total the shipload can be			
146. The coefficient of	x ⁿ in the binomial expans	sion of $(1 - x)^{-2}$ is		
A. $2^{n}/2!$	B. n + 1	C. n	D. 2n	
147. The largest coeffic	ient in the expansion of ($(1+x)^{24}$ is		
A. ${}^{24}C_{13}$	B. $^{24}C_{11}$	C. ${}^{24}C_{24}$	D. $^{24}C_{12}$	
148. The sum of first n	terms of two A.P. are 3n	+ 8, 7n + 15, then the ra	tio of their 12th term is	
A. 7/16	B. 8/15	C. 4/9	D. 3/7	
149. If A 21 , then Adj equal to	. A is			
A. \[\begin{array}{cccc} -1 & 2 & \\ 2 & -1 & \end{array}]			
B. \[\begin{array}{cccc} 1 & -2 & -2 & -1 \end{array} \]]			

C.
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$

150. If a, b, c are different, then the value of x satisfying the determinant

$$\begin{vmatrix} 0 & x^{2} - x^{3} - b \\ x^{2} + a & b \\ a & 0 & x^{2} + b \\ x^{4} + x - c & 0 \end{vmatrix} = 0 \text{ is}$$

151. If the system of equations x = a(y + z), y = b(z + x), z = c(x + y) (a, b, c \neq -1) has a non-zero solution, then the value of [a/(1 + a)] + [b/(1 + b)] + [c/(1 + c)] is

152. Two lines with direction cosines $< l_1, m_1, n_1 >$ and $< l_2, m_2, n_2 >$ are at right angles if

A.
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 1$$

B.
$$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

C.
$$l_1/l_2 = m_1/m_2 = n_1/n_2$$

D.
$$l_1 = l_2$$
, $m_1 = m_2$, $n_1 = n_2$

153. Given the line L : [(x - 1)/3] = [(y + 1)/2] =

[(z - 3)/-1] and the plane π : x - 2y = 0. Of the

following assertions, the only one that is always

true is

A. L is perpendicular
$$\pi$$
 B. L lies in T D. none of the above to π

154. Quartile deviation for a frequency distribution

A.
$$Q = 1/4 (Q_2 - Q_1)$$

B.
$$O = 1/3 (O_3 - O_1)$$

B.
$$Q = 1/3 (Q_3 - Q_1)$$
 C. $Q = 1/2 (Q_3 - Q_1)$ D. $Q = (Q_3 - Q_1)$

D.
$$O = (O_3 - O_1)$$

155. For a symmetrical distribution, $Q_1 = 20$ and $Q_3 = 40$. The value of 50th percentile is

156. The area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

	D. 17/4
157. A random variable X has the following probability di	stribution:
X: 0 1 2 3 4 5 6 7	8
p(X = x): a 3a 5a 7a 9a 11a 13a 15a	17a
then the value of a is	
A. 7/81 B. 5/81 C. 2/81	D. 1/81
158. Dialing a telephone number, an old man forgets the last two digits remembering only that these are different, dialed at random. The probability that the number dialed correctly is A. 1/90 B. 1/100 C. 1/45 D. none of the above	
159. Three identical dice are rolled. The probability that them is	ne same number will appear on each of
A. 1/18 B. 3/28 C. 1/36	D. 1/6
160. The value of $n \in I$ for which the function $f(x) = \sin nx$ A. 5 B. 4 C. 3	$x/[\sin(x/n)]$ has 4π as its period is D. 2
161. Lt (log cosx)/x is equal to $x \to 0$	
A. 0 B. 1 C. ∞	D. none of the above
162. Lt $[e^x - (1 + x)]/x^2$ is equal to $x \to 0$	
A. $1/2$ B. 1 C. 0 163. For the curve $x = t^2 - 1$, $y = t^2 - t$, tangent is parallel to x-axis where A. $t = 1/\sqrt{3}$ B. $-1/\sqrt{3}$ C. $t = 0$ D. $1/2$	D. 1/4
164. The function $f(x) = Kx^3 - 9x^2 + 9x + 3$ is monotonical A. $K > 3$ B. $K < 3$ C. $K \le 3$	D. none of the above
165. The area of the region bounded by the curve $y = x - x$ A. $5/6$ B. $1/2$ C. $1/3$	between $x = 0$ and $x = 1$ is D. $1/6$
166. If $\int_{0}^{1} f(x) dx = 1$, $\int_{0}^{1} x f(x) dx = a$, $\int_{0}^{1} x^{2} f(x) dx = a$	= a^2 , then $\int_0^{1} (a - x)^2 f(x) dx$ equals
A. $4a^2$ B. 0 C. $2a^2$	D. none of the above

167. The area between t	167. The area between the curve $y = 1 - x $ and x-axis is					
A. 1/3	B. 2	C. 1/2	D. 1			
168. The equations $ax + by + c = 0$ and $dx + ey + f = 0$ represents the same straight line if and only if						
A. $a/d = b/e$	B. $c = f$	C. $a/d = b/e = c/f$	D. $a = d$, $b = e$, $c = f$			
169. If $a + b + c = 0$, a then the angle between						
A. $\pi/6$ B. $2\pi/3$	C. $5\pi/3$ D. $\pi/3$					
170. The differential co	efficient of log tan x is					
A. $2 \sec^3 2x$	B. $2 \operatorname{cosec}^3 2x$	C. 2 sec x	D. 2 cosec x			
171 The differential co	efficient of f(log x) when	e f(x) = log x is				
A. $x/(\log x)$	B. $(\log x)/x$	C. $(x \log x)^{-1}$	D. none of the above			
172. The number of solution	utions of the equation tar	$1 x + \sec x = 2 \cos x \text{ lyin}$	g in the interval $[0, 2\pi]$			
A. 0	B. 1	C. 2	D. 3			
	the angle B is greater the $\sin x - 4 \sin^3 x - k = 0, 0$					
Α. π/3	Β. π/2	C. 2π/3	D. $5\pi/6$			
174 If one root of $5x^2 +$	-13x + k = 0 is reciproca	al of the other then				
A. k = 0	B. k = 5	C. $k = 1/6$	D. $k = 6$			
175. The number of quare unchanged by squar	dratic equations, which	O. R. 1/0	2. K. O			
A. 2 B. 4	C. 6 D. none of the above					
176. If $x^2 - 3xy + \lambda y^2 + 3$ A. 1	3x - 5y + 2 = 0 represent B. 4	s a pair of straight lines, C. 3	then the value of λ is D. 2			
177. If each element of a determinant of third order with value A is multiplied by 3, then the value of newly formed determinant is						
A. 3A	B. 9A	C. 27A	D. none of the above			
178. If A, B, and C are non-empty set subsets of the sets, then $(A - B) \cup (B - A)$ equals						
$A.(A\cap B)\cup (A\cup B)$	B. $(A \cup B)$ - $(A \cap B)$	C. A - $(A \cap B)$	D. $(A \cup B)$ - B			
179. A and B are two independent events. The probability that both A and B occur is 1/6 and the probability that neither of them occurs is 1/3. The probability of the occurence of the event A is						

A. 2/3 B. 5/6 C. 1/2 D. none of the above

180. The number of divisors of 9600 including 1 and 9600 is

A. 60 B. 58 C. 48 D. 46