1. The number of free electrons per 10 mm of an ordinary copper wire is 2×10^{21} . The average drift speed of the electrons is 0.25 mm/s. The current flowing is:				
A. 0.8 A	B. 8 A	C. 80 A	D. 5 A	
2. Which of the followA. Daniel	ing cells is more likely to B. Dry	be damaged due to sho C. Acid	rt circuiting? D. Fuel	
3. A gas expands from A. 1 Joule	5 litre to 105 litre at a co B. 4 Joule	onstant pressure 100N/m C. 8 Joule	² . The work done is D. 10 Joule	
		n B. Hydrogen nuclei thr D. None of these	ough nuclear fission	
5. In the atom bomb dr used was	opped by Americans in	1945 on Nagasaki, Japan	, the fissionable material	
A. Helium 4	B. Plutonium 239	C. Uranium 235	D. Uranium 233	
6. The engine of a truck by the truck in time <i>t</i> is		delivers constant power.	The distance travelled	
A. t	B. t^2	C. \sqrt{t}	D. $t^{3/2}$	
7. The velocity of elect hydrogen atom is	ron in ground state of			
	$\begin{array}{ccc} C.\ 2\ x\ 10^7 & D.\ 2\ x\ 10^8 \\ m/s & m/s \end{array}$			
8. The radius of the first of the second orbit must		a hydrogen atom is 5.3 x	$\times 10^{-11}$ m; then the radius	
A. $15.9 \times 10^{-11} \text{ m}$		C. 21.2 x 10 ⁻¹¹ m	D. 42.4 x 10 ⁻¹¹ m	
9. A person pushes a ro The work done is	ock of 10 ¹⁰ Kg mass by a	pplying a force of only 1	0N for just 4 seconds.	
A. 1000 Joule	B. 0 J	C. nearly zero	D. positive	
10. One can take pictur which are sensitive to	res of objects which are o	completely invisible to th	ne eye using camera films	
A. ultra-violet rays	B. sodium light	C. visible light	D. infra-red rays	
-	-	ed through an evacuated asmitted light is viewed t		
A. D_1 and D_2 lines of s intensity	odium with good	B. dark lines where D_1 been observed	and D ₂ lines should have	
C. continuous radiation	n from the bulb only	D. the entire emission s	spectrum of sodium	

12. Under the action of	f a constant force, a		
particle is experiencing	g a constant acceleration.		
The power is			
A. zero	B. positive		
C. negative		у	
	with time		
1			ce is 10 cm and the focal
-	cm, the refractive index		
A. 1.5	B. 1.66	C. 1.33	D. 3
14. A plane convex len length of lens is	s has radius of curvature	e 30 cm. If the refractive	index is 1.33, the focal
A. 10 cm	B. 90 cm	C. 30 cm	D. 60 cm
15. A beam of light is a	converging towards a po	int I on a screen. A plane	e parallel plate of glass
(thickness in the direct	ion of the beam $= t$, refra	active index = μ) is intro	oduced in the path of the
beam. The convergence	e point is shifted by		
A. t (μ - 1) away	B. t (1 + $1/\mu$) away	C. t (1 - $1/\mu$) nearer	D. t (1 + $1/\mu$) nearer
-			s halved and the distance
	creen is doubled. The fri	•	
A. unchanged	B. halved	C. doubled	D. quadrupled
17. Wavelength of red wavelengths is	light is λ_r , violet rays is	λ $_v$ and X -ray is λ $_x$ the	n the order of
A. $\lambda_x > \lambda_y > \lambda_r$	B. $\lambda_{v} > \lambda_{x} > \lambda_{r}$	C. $\lambda_r > \lambda_x > \lambda_v$	D. $\lambda_r > \lambda_v > \lambda$
18. The amount of wor			
	ach of mass <i>m</i> , to the roc	of	
of a house whose heigh	nt is <i>h</i> is		
A. $n mgh$ B. mgh/n	C. zero D. <i>ghn/m</i>		
10 In ICD aircuit in th	ne state of resonance, wh	ich of the following stat	amonto is correct? (cos
	le state of resonance, wh	iich of the following stat	ements is correct ? (cos
$\phi) =$	D 0 5	C 1	D. Nama af the sec
A. 0	B. 0.5	C. 1	D. None of these
20 In ICR circuit pha	use difference between v	oltage and current canno	t he
A. 80°	B. 90°	C. 145°	D. 0°
A. 00	D. 90	C. 14J	D . 0
21. If speed is plotted a a shape similar to that	-	energy against y-axis, th	nen the graph obtained has
A. circle	B. ellipse	C. hyperbola	D. parabola
	lying parallel to a magnetic encoded to maintain the	-	

A. $(\sqrt{3})$ w

C. (√3w)/2		D. 2w	
23. A vertical straight			
• 1	ards. A point <i>p</i> lies to the tance and another point <i>Q</i>		
lies to west of it at the	1 ~	2	
magnetic field at p is			
A. greater than at Q			
0 1 1 10	D. greater or less at Q		
C. less than at Q	depending upon the strength of the current		
	strength of the current		
24. In a parallel arrang	gement if $(R_1 > R_2)$, the point of $(R_1 > R_2)$ and $(R_1 > R_2)$.	ower dissipated in resista	nce R_1 will be
A. less than R_2	B. same as R_2	C. more than R_2	D. none of these
	• • • • • • • • •	1 1 1.1	64 611
25. For a fuse wire to t immaterial ?	be installed in the supply	line in a house which on	e of the following is
	ice of the material of the		
fuse wire		B. the diameter of the f	use wire
C. the length of the fus	se wire	D. none of these	
26. If V is voltage appl motor I_a is given by	lied, $E_{\rm a}$ is emf drop across	s the armature, the armat	ture current of a d.c.
A. $(V + E_a)/R_a$	B. E_a/R_a	C. V- E_a/R_a	D. V/R_a

27. The current of 2.0 amperes passes through a cell of e.m.f. 1.5 volts having internal resistance of 0.15Ω . The potential difference measured in volts across both the terminals of the cell will be A. 1.35 B. 1.50 C. 1.00 D. 1.20 28. In this circuit, current ratio i_1/i_2 depends upon A. R₁, R₂ B. R, R₁, and R R₂ and E C. R₁ and R R₂ and E C. R₁ and R D. E and R

29. A cell of emf *E* is connected across a resistance *r*. The potential difference between the
terminals of the cell is found to be *V*. The internal resistance of the cell must be
A. 2(E - V)V/rB. 2(E - V)r/EC. (E - V)r/VD. (E - V)/r30. Copper and germanium are both cooled to 70 K from room temperature, then
A. resistance of copper increases while that of
germanium decreasesB. resistance of copper decreases while that of
germanium increasesC. resistance of both decreasesD. resistance of both increases

31. The potential difference between the points A and B of the electrical circuit given is A. 1.5 V B. 1.0 V

32. A moving coil galvanometer has a resistance of 9.8 Ω and gives a full scale deflection when a current of 10 mA passes tbrough it. The value of the shunt required to convert it into a mini ammeter to measure current upto 500 mA is A, 0.02 Ω B, 0.2 Ω C, 2 Ω D, 0.4 Ω

33. The total electrical resistance between the points A and B of the circuit shown in the figure is

34. If the plates of a charged parallel plate capacitor are pulled away from each other

A. capacitance increases	B. energy increases	C. voltage increases	D. voltage decreases
--------------------------	---------------------	----------------------	----------------------

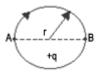
35. A parallel plate capacitor is charged by connecting its plates to the terminals of a battery. The battery remains connected and a glass plate is interposed between the plates of the capacitor, then

A. the charge on plates will be reduced

B. the charge on plates will increase

C. the potential difference between the plates of the capacitor will be reduced

D. the potential difference between the plates of the capacitor will increase


36. A person weighing 70Kg wt lifts a mass of 30 Kg to the roof of a building 10 m high. If he takes 50 sec to do so,then the power spent is

A. 19.6 W B. 196 W C. 300 W D. 50 W

37. Work done in carrying a charge q from A to B along a semi-circle is

A. $2\pi rq$ B. $4\pi rq$

C. πrq D. 0

+ 20

38. A particle *A* has charge +q and particle B has charge +4q with each of them having the same mass m. When allowed to fall from rest through same electrical potential difference, the ratio of their speed $V_A : V_B$ will become

A. 2:1 B. 1:2 C. 1:4 D. 4:1

39. The electric field at a small distance R from an infinitely long plane sheet is directly proportional to

A. $R^2/2$ B. R/2 C. R^{-2} D. none of these

40. In the diagram, the electric field intensity will be zero at a distance A. between -q and +2q charge B. towards +2q on the line drawn

C. away from the line towards +2q D. away from the line towards -q

41. Wein's displacement law is given by

A. $\lambda_m =$ B. $T/\lambda_m =$ C. $\lambda_m T =$ D. $T = \lambda_m$ constant constant = constant

42. If two electrons are forced to come closer to each to each other, then the potential energy A. becomes zero B. increases C. decreases D. becomes infinite

43. The specific heat at constant pressure is greater than that of the same gas at constant volume because

A. at constant volume work is done in expanding the gas

B. at constant pressure work is done in expanding the gas

C. the molecular attraction increases more at constant pressure

D. the molecular vibration increases more at constant pressure

44. The specific heats of CO₂ at constant pressure and constant volume are 0.833 J/kg.K and 0.641 J/kg.K respectively. If molecular weight of CO₂ is 44, what is the universal constant *R*? A. 4.19 x 10^7 erg/cal B. 848.8 J/gm/K C. 8.448 J/mol/K D. 4.19 J/cal

45. The freezing point of the liquids decreases when pressure is increased, if the liquid A. expands while freezing B. contracts while freezing D. none C. does not change in volume while freezing D. none 46. The equation of a transverse wave on a stretched string is given by $y = 0.05 \sin \pi (2t/0.002 - x/0.1)$ where x and y are expressed in metres and t in sec. The speed of the wave is A.100 B. 50 m/s C. 200 m/s D. 400 m/s m/sec

47. The ratio of velocity of the body to the velocity of sound is called

A. Magic number B. Laplace number C. Natural number D. Mach number

48. Television signals on earth cannot be received at distances greater than 100 km from the transmission station. The reason behind this is that

A. the receiver antenna is unable to detect the signal at a distance greater than 100 km

B. the TV programme consists of both audio and video signals

C. the TV signals are less powerful than radio signals

D. the surface of earth is curved like a sphere

49. A ball is thrown from a height of *h* m with an initial downward velocity v_0 . It hits the ground, loses half of its Kinetic energy & bounces back to the same height. The value of v_0 is A. $\sqrt{2gh}$ B. \sqrt{gh} C. $\sqrt{3gh}$ D. $\sqrt{2.5gh}$

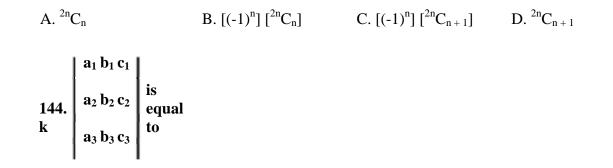
50. A thick rope of rubber of density 1.5×10^3 kg/m³ and Young's modulus 5 x 10^6 N/m², 8m in length, when hung from ceiling of a room, the increase in length due to its own weight is A. 9.6 x 10⁻ B. 19.2 x C. 9.6cm D. 9.6mm 10^{-5} m ³m 51. Water is falling on the blades of a turbine at a rate 6000Kg/min. The height of the fall is100m. What is the power gained by the turbine? A. 10KW **B.** 6KW C. 100KW D. 600KW 52. If momentum of alpha-particle, neutron, proton, and electron are the same, the minimum K.E. is that of A. alpha-particle C. proton B. neutron D. electron 53. An electric motor while lifting a given load produces a tension of 4500 N in the cable attached to the load. If the motor winds the cable at the rate of 2m/s, then power must be B. 15 kW C. 225 kW D. 9000 H.P A. 9 kW 54. If an electric iron electrons are accelerated through a potential difference of V volts. Taking electronic charge and mass to be respectively *e* and *m*, the maximum velocity attained by the electrons is D. $v^2/8em$ B. $\sqrt{(2eV)/m}$ C. 2m/eVA. $2eV/\sqrt{m}$ 55. A particle is moving on a circular track of radius 20 cm with a constant speed of 6 m/s. Its acceleration is D 36 m/s^2 B. 180 m/s^2 C. 1.2 m/s^2 A. 0 56. A satellite of the earth is revolving in a circular orbit with a uniform speed v. If gravitational force suddenly disappears, the satellite will: A. continue to move with the speed *v* along the original orbit B. move with the velocity v tangentially to the original orbit C. fall downward with increasing velocity D. ultimately come to rest somewhere on the original orbit 57. The kinetic energy K of a particle moving along a circle of radius R depends on the distance covered s as $K = as^2$. The force acting on the part1cle is B. $2as(1 + s^2/R)^{1/2}$ C. $as(1 + s^2/R^2)^{1/2}$ A. $2as^2/R$ D. None of these 58. Einstein was awarded Nobel Prize for his work in A. Photoelectric effect B. Special theory of relativity C. General theory of relativity D. None of these 59. One second is defined to be equal to A. 1650763.73 periods of the Krypton clock B. 652189.63 periods of the Krypton clock C. 1650763.73 periods of the Cesium clock D. 9192631770 periods of the Cesium clock

	energy and torque respe B. MLT^2 and ML^2T^2	ctively are C. ML^2T^2 and MLT^2	D. MLT^2 and MLT^2
61. When Benzene dia A. benzene	zonium chloride reacts v B. phenol	vith hypophosphorous ac C. phenylphosphite	-
62. The reaction of alig A. nitrile	phatic primary amine wit B. alcohol	th nitrous acid in cold pro C. diazonium salt	oduces D. secondary amine
A. acetamide 64. The aldol condensa	B. propionamide ation of acetaldehyde res	f bromine and caustic po C. formamide ults in the formation of D C. CH ₃ CH ₂ CHOHCHO	D. methyl cyanide D D. CH ₃ CH ₂ OH +
65. Which compound a A. Butan-l-ol	reacts fastest with Lucas B. Butan-2-ol	reagent at room tempera C. 2-Methyl propan-l-o	CH ₃ COOH ture? D. 2-Methyl propan-2- ol
66. The reaction with I A. (CH ₃) ₃ CD	D ₂ O, (CH ₃) ₃ CMgCl prod B. (CH ₃) ₃ CO	uces C. (CD ₃) ₃ CD	D. (CD ₃) ₃ COD
A. 1-Butene	Alcoholic potash, l-chloro B. 1-Butanol g agent during nitration of C. NO_2^- D. HNO ₃	C. 2-Butene	D. 2-Butanol
69. The number of sign	ma and pi bonds in 1-but	en-3-yne are C. 8 sigma and 2 pi	D. 6 sigma and 4 pi
70. The most stable ca A. sec-butyl	rbonium ion among the o B. ter-butyl	cations is C. n-butyl	D. none of these
71. How many optical A. 1	ly active stereo-isomers a B. 2	are possible for butane-2 C. 3	, 3-diol? D. 4
72. B.P. and M.P. of ir A. high	nert gases are B. low	C. very high	D. very low
A. Linkage	B. Geometrical	r are examples of which C. Ionization	type of isomerism ? D. Optical
A. 3	in the complex [Cr(H ₂ O) B. 1	$C_{12} = 18$	D. 5

75. In Nessler's reagen A. Hg^+ B. Hg^{2+}	t, the ion is C. HgI_2^2 D. HgI_4^2		
	$_{2}$ O, copper is co-ordinate es B. four water molecule		D. one water molecule
77. Which of the follow A. HCl	wing is a weak acid? B. HBr	C. HP	D. HI
78. When SO_2 is passe A. the solution turns b C. SO_2 is reduced	d through acidified K_2C_1 lue	c_2O_7 solution, B. the solution is decol D. green $Cr_2(SO_4)_3$ is f	
79. Which of the follow A. H_2O	wing has lowest boiling J B. H ₂ S	c. H ₂ Se	D. H ₂ Te
80. Nitric oxide is prepA. Fe81. The laughing gas isA. nitrous B. nitric oxide oxide	B. Cu B. Cu C. nitrogen D. nitrogen trioxide pentaoxide	C. Zn	D. Sn
82. Ordinary glass isA. sodium silicateC. calcium and Sodium	n silicate	B. calcium silicate D. copper silicate	
83. The chemical name of phosgene is			
A. Phosphene	B. Carbonyl chloride	C. Phosphorous oxychloride	D. Phosphorous trichloride
84. Which one of the f A. BF ₃	ollowing is strongest Lev B. BCl ₃	wis acid? C. BBr ₃	D. BI ₃
85. Three centred bond A. NH ₃	l is present in B. B_2H_6	C. BCl ₃	D. AlCl ₃
86. Plaster of Paris is A. CaSO ₄ .H ₂ O	B. CaSO ₄ .2H ₂ O	C. CaSO ₄ .1/2 H ₂ O	D. CaSO ₄ .3/2 H ₂ O
87. Rocky impurities p calledA. flux B. gangue88. Free hydrogen is for	C. matte D. slag		
A. acids	B. water	C. marsh gas	D. water gas
89. When zeolite, which	ch is hydrated sodium alu	uminium silicate, is treat	ed with hard water; the

sodium ions are excha A. H ⁺	nged with B. K ⁺	C. SO ₄ ²⁻	D. Mg ²⁺
90. On passing 0.3 farmed and the second sec	aday of electricity throug hode is $(Al = 27)$		ne amount of aluminium
A. 0.27 g	B. 0.3 g	C. 2.7 g	D. 0.9 g
91. The migration of c	olloidal particles under i	nfluence of an electric fi	eld is known as
A. Electro-osmosis	B. Brownian movement	nt C. Cataphoresis	D. Dialysis
92. In a colloidal state	, particle size ranges fror	n	
A. 1 to 10 A ^o	B. 20 to 50 A ^o	C. 10 to 1000 A ^o	D. 1 to 280 A ^o
A. 1.05 ⁻¹	irst order reaction is 69.3 B. 0.15 ⁻¹ ion of a strong acid and	5. The value of rate cons C. 0.015 ⁻¹	stant of the reaction is D. 0.0015 ⁻¹
A. 13.7 B. 9.6	C. 6 D. 11.4		
Kcal/mol Kcal/mol	Kcal/mol Kcal/mol		
95. In exothermic reac	tions		
A. $H_R = H_P$	B. $H_R > H_P$	C. $H_R < H_P$	D. None of the above
96. Which is a buffer s			
A. $CH_3COOH +$	B. $CH_3COOH +$	C. $CH_3COOH + NH_4C$	Cl D. NaOH + NaCl
CH ₃ COONa 97. The pH of 0.01 M	CH_3COONH_4		
A. 1.0	B. 2.0	C. 10.0	D. 11.0
	lowing case does the rea		
A. $k = 10^2$	B. $k = 10^{-2}$	C. $k = 10$	D. k = 1
99. What quantity of la	imestone (CaCO ₃) on hea	ating will give 28 kg of (CaO?
A. 1000 kg	B. 56 kg	C. 44 kg	D. 50 kg
100. The percentage of	f oxygen in NaOH is		
A. 40	B. 16	C. 18	D. 10
101. If we take 44 g of 101		0.10	2110
what will be the mole	•		
mixture?			
A. 1/5 B. 1/3	C. 1/2 D. 1/4		
102. The molarity of a	solution of Na_2CO_3 have	ing 5 3 g/250 ml of solut	ion is
A. 0.2 M	B. 2 M	C. 20 M	D. 0.02 M

103. A gas is initially at 1 atm pressure. To compress it to 1/2th of its initial volume, pressure to be applied is


A. 1 atm	B. 4 atm	C. 2 atm	D. 1/4 atm
104. The value of <i>R</i> in A. 0.0831	calorie/degree/mole is B. 8.31	C. 8.31 x 10^7	D. 1.987
105. Which of the follo A. Conductors	owing possesses zero resi B. Semi-conductors	istance at 0 K? C. Super-conductors	D. Insulators
106. CsCl has lattice of A. ccp	f the type B. fcc	C. bcc	D. hcp
107. In the reaction bet A. sodium atom is reduced 108. Octahedral molect $_$ hybridisation. A. sp ³ d B. sp ³ d ²	1	ne to form sodium chlori C. chlorine atom is reduced	de, D. chloride ion is reduced
109. NH_3 and BF_3 form A. a co-ordinate bond	n an adduct readily becau B. a covalent bond	use they form C. an ionic bond	D. a hydrogen bond
110. Diagonal relations A. Li and Mg	B. Na and Mg	C. K and Mg	D. Al and Mg
A. F	is the highest electro-neg B. He	C. Ne	D. Na
112. Loss of a -particleA. loss of two neutronsC. loss of two neutrons	-	B. loss of two protons D. none of the above	only
113. Stable compounds A. B	s in + 1 oxidation state ar B. Al	re formed by C. Ga	D. Th
114. Sodium hexameta	phosphate is used as		
A. a cleansing agent	B. an insecticide	C. a water softner	D. an iron exchange resin
115. The strongest acidA.B.ClO3(OH)ClO2(OH)	C. D.		
	the following pairs of ic	ons cannot be separated l	by H ₂ S in dilute
hydrochloric acid? A. Bi ³⁺ , Sn ⁴⁺	B. Al^{3+}, Hg^{2+}	C. Zn^{2+} , Cu^{2+}	D. Ni ²⁺ , Cu ²⁺

117. The alkane would have only the primary and tertiary carbon is

A. Pentane	B. 2-methylbutane	C. 2, 2- dimethylpropane	D. 2, 3-dimethylbutane
118. The product of rea A. ethane	action of alcoholic silver B. ethene	nitrite with ethy1 bromi C. nitroethane	de is D. ethyl a1coho1
119. Formy1 chloride l formyl chloride in form	has not been so prepared nulation?	. Which one of the follow	ving can function as
A. HCHO + HCl		C. CO + HCl	D. $HCONH_2 + HCl$
•		npound is C. Acetanilide	D. p-Nitroaniline
122. Condition that the perpendicular is A. $a = -b$	two lines represented by B. $ab = 1$	y the equation $ax^2 + 2hxy$ C. a = b	$y + by^2 = 0$ to the D. $ab = -1$
A. a = -b	$\mathbf{D}. \ \mathbf{a}0 = 1$	C. a = 0	D. ab = -1
123. If $A \subseteq B$, then $A \in A$. B^{c}	\cap B is equal to B. A ^c	С. В	D. A
124. In order that the f A. $f(0) = 0$	unction $f(x) = (x + 1)^{\cot x}$ B. $f(0) = e$	is continuous at $x = 0$, for C . $f(0) = 1/e$	(0) must be defined as D. none of the above
125. The eccentricity of A. 4/3	of the ellipse $16x^2 + 7y^2 = B.7/16$	= 112 is C. 3/√7	D. 3/4
A. a circle	ee complex numbers in A B. an ellipse $i) = x + iy$, then $x^2 + y^2 i$	C. a straight line	D. a parabola
A. $[(a^2 + B. [(a + 1)^4]/(4a^2 + 1)^2]/(4a^2 + 1)^2]/(4a^2 + 1)$	C. $[(a^2 - 1)^2]/(4a^2 - 1)^2$ D. none of the above		
128. The vertices of a t A. (3/2, 2)	triangle are (0, 0), (3, 0) a B. (0, 0)	and (0, 4). Its orthocentro C. (1, 4/3)	e is at D. none of the above
129. The eccentricity of	of the conic $9x^2 - 16y^2 = 1$	144 is	
A. 5/4	B. 4/3	C. 4/5	D. √7

130. The vertices of a triangle are (0, 3), (-3, 0) and (3, 0). The co-ordinates of its orthocentre are

A. (0, 2) B. (0, -3) C. (0, 3) D. (0, -2) 131. If t is the parameter for one end of a focal chord of the parabola $y^2 = 4ax$, then its length is C. a $[t - (1/t)]^2$ B. a [t + (1/t)]D. a $[t + (1/t)]^2$ A. a [t - (1/t)] 132. The value of $\cos^2 \theta + \sec^2 \theta$ is always A. equal to 1 B. less than 1 C. greater than or equal to 2 D. greater than 1, but less than 2 133. The number of points of intersection of 2y = 1 and y = sin x, $-2\pi \le x \le 2\pi$ is A. 2 B. 3 C. 4 D. 1 134. If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 = 3$, then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 =$ A. 0 **B**. 1 C. 2 D. 3 135. The number of solutions in $0 \le x \le \pi/2$ of the equation $\cos 3x \tan 5x = \sin 7x$ is D. none of the above A. 5 B. 7 C. 6 136. One end of a diameter of the circle $x^2 + y^2 - 4x - 2y - 4 = 0$ is (5, -6), the other end is A. (4, -9) B. (-9, -4) C. (4, 9) D. (9, -4) 137. The set of values of m for which both the roots of the equation $x^2 - (m + 1)x + m + 4 = 0$ are real and negative consists of all m, such that A. $-3 \ge m \text{ or } m \ge 5$ B. $-3 < m \le 5$ C. - $4 < m \le -3$ D. $-3 < m \le -1$ 138. Let $P_n(x) = 1 + 2x + 3x^2 + \dots + (n + 1)x^n$ be a polynomial such that n is even. Then the number of real roots of P(x) = 0 is C. 0 A. 1 B. n D. none of the above 139. The next term of the sequence 1, 3, 6, 10, is A. 16 B. 13 C. 15 D. 14 140. If H is the harmonic mean between P and Q, then H/P + H/Q is A. (P + Q)/PQB. PQ/(P + Q)C. 2 D. none of the above 141. A class is composed of two brothers and six other boys. In how many ways can all the boys be seated at a round table so that the two brothers are not seated besides each other? A. 4320 B. 3600 D. 1440 C. 720 142. The binomial coefficient of the 4th term in the expansion of $(x - q)^5$ is A. 15 B. 20 C. 10 D. 5 143. For $x \neq 0$, the term independent of x in the expansion of $(x - x^{-1})$ is equal to

	a_1	b_1	kc_1	
	a_2	kb_2	c_2	
A.	ka3	b ₃	c ₃	

ka ₁	kb_1	kc_1	
ka ₂	kb_2	kc ₂	
ka ₃	kb ₃	kc ₃	
	ka ₂	ka ₂ kb ₂	ka ₂ kb ₂ kc ₂

C.
$$\begin{vmatrix} ka_1 & b_1 & c_1 \\ ka_2 & b_2 & c_2 \\ ka_3 & b_3 & c_3 \end{vmatrix}$$

D. $\begin{vmatrix} ka_1 & b_1 & c_1 \\ a_2 & kb_2 & c_2 \\ a_3 & b_3 & kc_3 \end{vmatrix}$

A. 2/3 B. 8/3 C. 16/3 D. 1/3

146. If
$$|A| =$$

 a b c
 x y z
 p q r
 | and $|B| =$

 q -b y
 -p a -x
 r -c z
 |
 , then

 A. | A | = 2 | B | B. | A | = | B | C. | A | = - | B | D. none of the above

147. Equation of the sphere with centre (1, -1, 1) and radius equal to that of sphere $2x^2 + 2y^2 + 2z^2 - 2x + 4y - 6z = 1$ is A. $x^2 + y^2 + z^2 - 2x + 2y - 2z + 1 = 0$ C. $x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0$ 148. Equation of the line passing through the point (1, 1, 1) and parallel to the plane 2x + 3y + 3z + 5 = 0 is A. (x - 1)/1 = (y - 1)/2 = B. (x - 1)/-1 = (y - 1)/1 (z - 1)/1 = (z - 1)/-1C. (x - 1)/3 = (y - 1)/2 = D. (x - 1)/2 = (y - 1)/3 = (z - 1)/1

149. If a, b, c are constants such that a and c are of opposite signs and r is the correlation coefficient between x and y, then the correlation coefficient between ax + b and cy + d is A. (a/c)rB.r C. - r D. (c/a)r150. From a deck of 52 cards, the probability of drawing a court card is A. 3/13 **B**. 1/4 C. 4/13 D. 1/13 151. A binomial probability distribution is symmetrical if p, the probability of success in a single trial, is A. > 1/2B. < 1/2C. < q, where q = 1 - p D. = 1/2152. The binomial distribution whose mean is 10 and S.D. is $2\sqrt{2}$ is A. $(4/5 + 1/5)^{50}$ B. $(4/5 + 1/5)^{1/50}$ C. $(4/5 + 5/1)^{50}$ D. none of the above 153. tan (cot ^{-1}x) is equal to B. cot $(\tan^{-1}x)$ Α. π/4 - χ C. tan x D. none of the above 154. If f(x) is an odd periodic function with period 2, then f(4) equals A. - 4 **B**. 4 C. 2 D. 0 155. The function $f(x) = [(x^3 + x^2 - 16x + 20)]/(x - 2)$ is not defined for x = 2. In order to make f(x) continuous at x = 2, f(2) should be defined as A. 0 **B**. 1 C. 2 D. 3 156. Let f and g be differentiable functions satisfying g'(a) = 2, g(a) = b, and fog = 1 (identity function). Then f'(b) is equal to A. 0 B. 2/3 C. 1/2 D. none of the above 157. A cone of maximum volume is inscribed in a given sphere. Then the ratio of the height of the cone to the diameter of the sphere is A. 3/4 B. 1/3 C. 1/4 D. 2/3 158. The function is decreasing in the interval B. $0 < x < \infty$ A. - $\infty < x < -10/3$ C. -3 < x < 3D. -10/3 < x < 0**159.** Suppose that f''(x) is continuous for all x and $\mathbf{tf'}(\mathbf{t}) \ \mathbf{dt} = \mathbf{0},$ f(0) = f'(1). If then the value of f(1) is D. none of A. 3 **B**. 2 C. 9/2 the above 160. Integrating factor of differential equation $\cos x (dy/dx) + y \sin x = 1$ is

A. sin x B. sec x C. tan x D. cos x

 $dx/(1 + 4x^2) =$ 161. If then the value of a is **B**. 1/2 C. $\pi/4$ A. $\pi/2$ D. 1 162. The maximum value of $(\log x)/x$ is A. 2/e B. 1/e C. 1 D.e 163. If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of q is D. none of B. 4/49 A. 49/4 C. 4 the above 164. The sum of the series $1/2 + 1/3 + 1/6 + \dots$ to 9 terms is A. -5/6 B. -1/2 C. 1 D. -3/2 165. The sum of all two digit numbers, which are odd is A. 2475 B. 2530 C. 4905 D. 5049 166. How many ten digit numbers can be formed by using the digits 3 and 7 only? A. ${}^{10}C_1 + {}^9C_2$ **B**. 2^{10} C. ${}^{10}C_2$ D. 10! 167. If x and y are real and different and $u = x^2 + 4y^2 + 9z^2 - 6xyz - 3zx - 2xy$, then u is always A. non-negative B. zero D. none of the above C. non-positive 168. If a be a non-zero vector, then which of the following is correct? B. a. a > 0A. $a \cdot a = 0$ C. a. $a \ge 0$ D. a. $a \le 0$ 169. If two vectors a and b are parallel and have equal magnitudes, then A. they are equal B. they are not equal C. they may or may not D. they do not have the be equal same direction 170. In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A.P., then the length of the third side can be A. $5 \pm \sqrt{6}$ B. 3√3 C. 5 D. none of the above 171. The three lines 3x + 4y + 6 = 0, $\sqrt{2x} + \sqrt{3y} + 2\sqrt{2} = 0$, and 4x + 7y + 8 = 0 are A. sides of a triangle D. none of the above B. concurrent C. parallel 172. The pole of the straight line 9x + y - 28 = 0 with respect to the circle $2x^2 + 2y^2 - 3x + 5y - 7$ = 0 is B. (1, 3) C. (3, -1) D. (-3, 1) A. (3, 1)

173. If the sets A and B are defined as $A = \{ (x, y) : y = e^x, x \in R \}, B = \{ (x, y) : y = x, x \in R \},$ then C. A \subset B A. A \cup B = A D. B \subseteq A B. A \cap B = ϕ 174. The $\frac{2a}{r}$ { f(x)/[f(x) + f(2a) - x)] }dx is equal value of the õ integral to D. none of A. a B. 2a C. 3a the above 175. The slope of the normal at the point (at², 2at) of the parabola $y^2 = 4ax$ is B.t C. - t A. 1/t D. -1/t 176. If z is any complex number such that $|z + 4| \le 3$, then the greatest value of |z + 1| is A. 2 B. 6 C. 0 D. - 6 177. The equation $\cos x + \sin x = 2$ has A. only one solution B. two solutions C. no solution D. infinite number of solutions 178. The most general value of θ , which satisfies both the equations $\tan \theta = -1$ and $\cos \theta = 1/\sqrt{2}$ will be A. $n\pi + (7\pi/4)$ B. $n\pi + (-1)^n (7\pi/4)$ C. $2n\pi + (7\pi/4)$ D. none of the above 179. A spherical ball of radius r placed on the ground subtends an angle of 60° at a point A of the ground. Then the distance of the point A from the centre of the ball is D. none of A. 3r B. 2r C. 4r the above 180. In a triangle ABC, $a^2 \cos 2B + b^2 \cos 2A + 2ab \cos (A - B)$ is equal to A. c $B.c^2$ C. 2c D. none of the above