CHEMISTRY

- Which of the following is not an ore of magnesium? 1.
 - 1) Carnallite

2) Dolomite

3) Calamine

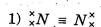
- Sea water
- The atomic numbers of Ni and Cu are 28 and 29 respectively. The electron configuration 2. $1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10}$ represents
 - 1) Cu^+

2) Cu^{2+}

3) Ni^{2+}

- 4) Ni
- In the following, the element with the highest ionisation energy is 3.
 - 1) $[Ne]3s^23p^1$

2) $[Ne]3s^2 3 p^3$ 4) $[Ne]3s^2 3 p^4$


3) $[Ne]3s^23p^2$

- In the conversion of Br_2 to BrO_3^- , the oxidation number of Br changes from .4.
 - 1) zero to + 5

2) + 1 to + 5

3) zero to -3

- 4) + 2 to + 5
- Among the alkali metals cesium is the most reactive because
 - 1) its incomplete shell is nearest to the nucleus
 - it has a single electron in the valence shell
 - 3) it is the heaviest alkali metal
 - 4) the outermost electron is more loosely bound than the outermost electron of the other alkali metals.

$$2) \overset{\times}{\times} \overset{\times}{N} \overset{\times}{=} \overset{\times}{N} \overset{\times}{\times}$$

3)
$$\overset{\times}{N}\overset{\times}{N}\overset{\times}{N} - \overset{\times}{N}\overset{\times}{N}\overset{\times}{N}$$

4)
$$\overset{\times}{N}\overset{\times}{N}\overset{\times}{N} = \overset{\times}{N}\overset{\times}{N}\overset{\times}{N}$$

7. Hydrogen bond is strongest in

1)
$$S-H----O$$

3)
$$F-H----F$$

8. The decomposition of a certain mass of $CaCO_3$ gave $11.2~\mathrm{dm^3}$ of CO_2 gas at STP. The mass of KOH required to completely neutralise the gas is

Which of the following represents the Lewis structure of N_2 molecule?

1) 56 g

2) 28 g

3) 42 g

4) 20 g

9. The density of a gas is 1.964 g dm⁻³ at 273 k and 76 cm Hg. The gas is

1) CH₄

2) C_2H_6

3) CO₂

4) Xe

10. 0.06 mole of KNO_3 solid is added to 100 cm³ of water at 298 k. The enthalpy of KNO_{3aq} solution is 35.8 kJmol⁻¹. After the solute is dissolved the temperature of the solution will be

1) 293 k

2) 298 k

3) 301 k

4) 304 k

- 11. 4 moles each of SO_2 and O_2 gases are allowed to react to form SO_3 in a closed vessel. At equilibrium 25 % of O_2 is used up. The total number of moles of all the gases present at equilibrium is
 - 1) 6.5

2) 7.0

3) 8.0

- 4) 2.0
- 12. An example for autocatalysis is
 - 1) oxidation of NO to NO₂
 - 2) oxidation of SO_2 to SO_3
 - 3) decomposition of KClO_3 to KCl and O_2
 - 4) oxidation of oxalic acid by acidified $KMnO_4$
- 13. During the fusion of an organic compound with sodium metal, nitrogen of the compound is converted into
 - 1) $NaNO_2$

. 2). NaNH₂

3) NaCN

- 4) NaNC
- 14. Identify the product Y in the following reaction sequence

$$CH_{2}-CH_{2}-COO$$

$$Ca \xrightarrow{heat} X \xrightarrow{Zn-Hg} Y$$

$$CH_{2}-CH_{2}-COO$$

1) pentane

2) cyclobutane

3) cyclopentane

- 4) cyclopentanone
- 15. The reaction $C_2H_5ONa + C_2H_5I \rightarrow C_2H_5OC_2H_5 + NaI$ is known as
 - 1) Kolbe's synthesis

- 2) Wurtz's synthesis
- 3) Williamson's synthesis
- 4) Grignard's synthesis

- 16. ΔG^0 Vs T plot in the Ellingham's diagram slopes downwards for the reaction
 - $\cdot 1) \quad Mg + \frac{1}{2}O_2 \to MgO$
- $2) \quad 2Ag + \frac{1}{2}O_2 \rightarrow Ag_2O$

3) $C + \frac{1}{2}O_2 \rightarrow CO$

- 4) $CO + \frac{1}{2}O_2 \rightarrow CO_2$
- 17. Which of the following reaction taking place in the Blast furnace is endothermic?
 - 1) $CaCO_3 \rightarrow CaO + CO_2$
- 2) $2C + O_2 \rightarrow 2CO$

3) $C + O_2 \rightarrow CO_2$

- 4) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 18. Liquor ammonia bottles are opened only after cooling. This is because
 - 1) it is a mild explosive
- 2) it is a corrosive liquid
- 3) it is a lachrymatory
- 4) it generates high vapour pressure
- 19. The formation of $O_2^+[P_t F_6]^-$ is the basis for the formation of Xenon fluorides. This is because
 - 1) O_2 and Xe have comparable sizes
 - 2) both O_2 and Xe are gases
 - 3) O_2 and Xe have comparable ionisation energies
 - 4) O_2 and Xe have comparable electronegativities
- 20. The highest magnetic moment is shown by the transition metal ion with the configuration
 - 1) $3d^2$

2) $3d^{5}$

3) $3d^7$

4) $3d^9$

- 21. A transition metal ion exists in its highest oxidation state. It is expected to behave as
 - 1) a chelating agent
- 2) a central metal in a coordination compound
- 3) an oxidising agent
- 4) a reducing agent
- 22. In which of the following complex ion, the central metal ion is in a state of sp^3d^2 hybridisation?

$$(1) \left[CoF_6 \right]^{3-}$$

$$2) \quad \left[Co(NH_3)_6 \right]^{3+}$$

3)
$$\left[Fe(CN)_{6} \right]^{3-}$$

4)
$$\left[Cr(NH_3)_6\right]^{3+}$$

- 23. Which of the following can participate in linkage isomerism?
 - NO_2

 $2) \quad H_2 \ddot{N} C H_2 C H_2 \ddot{N} H_2$

3) H_2O

- 4) $:NH_3$
- 24. Which of the following has the highest bond order?
 - 1) N_2

2) 0

3) He₂

- 4) H_2
- 25. Which of the following is diamagnetic?
 - $^{\circ}1)$ H_{2}^{+}

2) *O*₂

3) *Li*₂

4) He_2

26.	a reactant A decreases from 0.1 M to 0.025 M in 40 minutes. If the	, 16
	reaction follows I order kinetics, the rate of the reaction when the concentration of X	ic
*	0.01 M will be	19

- 1) $1.73 \times 10^{-4} M \text{ min}^{-1}$
- 2) $3.47 \times 10^{-4} M \text{ min}^{-1}$
- 3) $3.47 \times 10^{-5} M \text{ min}^{-1}$
- 4) $1.73 \times 10^{-5} M \text{ min}^{-1}$

27. Chemical reactions with very high $E_{\rm a}$ values are generally

1) very fast

2) very slow

3) moderately fast

4) spontaneous

28. Which of the following does not conduct electricity?

1) fused NaCl

2) solid *NaCl*

3) brine solution

4) Copper

29. When a quantity of electricity is passed through $CuSO_4$ solution, 0.16 g of Copper gets deposited. If the same quantity of electricity is passed through acidulated water, then the volume of H_2 liberated at STP will be [Given At.Wt. Cu = 64]

1) 4.0 cm^3

 $2) 56 \text{ cm}^3$

 $3) 604 \text{ cm}^3$

4) 8.0 cm^3

30. Solubility product of a salt AB is 1×10^{-8} M² in a solution in which the concentration of A^+ ions is 10^{-3} M. The salt will precipitate when the concentration of B^- ions is kept

- 1) between 10^{-8} M to 10^{-7} M
- 2) between 10^{-7} M to 10^{-6} M

3) $> 10^{-5} \,\mathrm{M}$

4) $< 10^{-8} \,\mathrm{M}$

31. Which one of the following condition will increase the voltage of the cell represented by the

equation: $Cu_{(s)} + 2Ag^{+}_{aq} \rightleftharpoons Cu^{2+}_{aq} + 2Ag_{(s)}$

- 1) increase in the dimensions of Cu electrode
- 2) increase in the dimensions of Ag electrode
- 3) increase in the concentration of Cu^{2+} ions
- 4) increase in the concentration of Ag^+ ions
- **32.** The pH of 10^{-8} M HCl solution is

1) 8.

2) more than 8

3) between 6 and 7

- 4) slightly more than 7
- 33. The mass of glucose that should be dissolved in 50 g of water in order to produce the same lowering of vapour pressure as is produced by dissolving 1 g of urea in the same quantity of water is

1) 1 g

2) 3 g

3) 6 g

- 4) 18 g
- 34. Osmotic pressure observed when benzoic acid is dissolved in benzene is less than that expected from theoretical considerations. This is because
 - 1) benzoic acid is an organic solute
 - 2) benzoic acid has higher molar mass than benzene
 - 3) benzoic acid gets associated in benzene
 - 4) benzoic acid gets dissociated in benzene
- 35. For a reaction to be spontaneous at all temperatures
 - 1) ΔG and ΔH should be negative
- .2) ΔG and ΔH should be positive

3) $\Delta G = \Delta S = 0$

4) $\Delta H < \Delta G$

JO.	which of the following electrolyte will ha	ave maximum flocculation value for $Fe(OH)_3$ sol. ?
•	1) NaCl	2) $Na_{\gamma}S$
	3) $(NH_4)_3 PO_4$	4) $K_2 SO_4$
37.	For a reversible reaction: $X_{(g)} + 3Y_{(g)} =$	$=2Z_{(g)}$
	$\Delta H = -40 \mathrm{kJ}$ the standard entropies of X	, Y and Z are 60, 40 and 50 $ m JK^{-1}$ mol $^{-1}$, respectively.
	The temperature at which the above read	ction attains equilibrium is about
٠,	1) 400 K	2) 500 K
	3) 273 K	4) 373 K
	A CONTRACTOR OF THE CONTRACTOR	
38.	The radii of Na^+ and Cl^- ions are 95 pm a unit cell is	and 181 pm respectively. The edge length of NaCl
	1) 276 pm	2) 138 pm
	3) 552 pm	4) 415 pm
39.	Inductive effect involves	
	1) displacement of σ electrons	0) 11 1 1
	3) delocalisation of σ electrons	2) delocalisation of π electrons
(4)	association of 8 electrons	4) displacement of π electrons
40.	The basicity of aniline is less than that of	cyclohexylamine. This is due to
	1) $+R$ effect of $-NH_2$ group	2) $-I$ effect of $-NH_2$ group
	3) $-R$ effect of $-NH_2$ group	4) hyperconjugation effect

41. Wethyl bromide is converted into ethane by	heating it in ether medium with
1) Al	2) Zn
3) Na	4) Cu
	d to be entically active?
42. Which of the following compound is expected	
$(CH_3)_2$ CH CHO	2) $CH_3CH_2CH_2CHO$
3) $CH_3CH_2CHBr\ CHO$	4) $CH_3CH_2CBr_2CHO$
43. Which cycloalkane has the lowest heat of c	ombustion per CH_2 group?
1) cyclopropane	2) cyclobutane
3) cyclopentane	4) cyclohexane
44. The catalyst used in the preparation of a	n alkyl chloride by the action of $\mathrm{dry}\ HCl$ on a
alcohol is	
1) anhydrous $AlCl_3$	2) FeCl ₃
3) anhydrous $ZnCl_2$	4) Cu
45. In the reaction	
	(Augusta)
$R - X \xrightarrow{alcoholic} A \xrightarrow{dilute} B,$	
the product B is	
1) alkyl chloride	2) aldehyde
3) carboxylic acid	4) ketone

46.	 Which of the following compo 	und would not evolve ${\it CO}_2$ when treated with ${\it NaHCO}_3$ solution
	1) sancyne acid	2) phenol
1	3) benzoic acid	4) 4-nitro benzoic acid
47.	By heating phenol with chlor	roform in alkali, it is converted into
	1) salicylic acid	2) salicylaldehyde
	3) anisole	4) phenyl benzoate
48.	When a mixture of calcium	benzoate and calcium acetate is dry distilled, the resulting
	compound is	and resulting
•	1) acetophenone	2) benzaldehyde
	3) benzophenone	4) acetaldehyde
49.	Which of the following does n	ot give benzoic acid on hydrolysis?
	1) phenyl cyanide	2) benzoyl chloride
	3) benzyl chloride	4) methyl benzoate
50.	Which of the following would	undergo Hoffmann reaction to give a primary amine?
8	o 11	
	1) $R-C-Cl$ 3) $RCONH_2$	2) RCONHCH ₃
	3) $RCONH_2$	4) RCOOR
		(Space for Day of W. 1)

- 51, Glucose contains in addition to aldehyde group
 - 1) one secondary OH and four primary OH groups
 - one primary OH and four secondary OH groups
 - 3) two primary OH and three secondary OH groups
 - three primary OH and two secondary OH groups
- A distinctive and characteristic functional group of fats is
 - 1) a peptide group

2) an ester group

3) an alcoholic group

a ketonic group

At pH = 4 glycine exists as

1)
$$H_3 \stackrel{+}{N} - CH_2 - COO^-$$

3) $H_2 N - CH_2 - COOH$

2)
$$H_3 \stackrel{+}{N} - CH_2 - COOH$$

3)
$$H_2N - CH_2 - COOH$$

4)
$$H_2N - CH_2 - COO^-$$

- Insulin regulates the metabolism of
 - 1) minerals

2) amino acids

3) glucose

- vitamins
- The formula mass of Mohr's salt is 392. The iron present in it is oxidised by $KMnO_4$ in acid 55. medium. The equivalent mass of Mohr's salt is
 - 1) 392

31.6

3) 278

4) 156

56.	The bro	wn ring test for nitrates depends	on	, ,		5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×		
	1)		oxide					
, v	2)				•		2	
	3)	reduction of ferrous sulphate to					e	,
	4)	oxidising action of sulphuric aci			*			
57.	Acrolei 1) 3)	n test is positive for polysaccharides oils and fats	2) 4)	proteins reducing s	sugars			
58.	An organ	nic compound which produces a bl r is	uish g	reen colour	ed flan	ne on he	ating in I	oresence
	1)	chlorobenzene	2)	benzaldeh	vde			
ŕ	3)	aniline	4)	benzoic ac			ž .	
59.	concentr	action $A+B \rightarrow C+D$ if the concation of B , the rate gets doubles without altering the concentration is	ed. If	the conce	ntratio	n of R	ie inero	and bre
, F	1)		2)	ere ere ere			,	
	3)	$\frac{3}{2}$	4)	$\frac{4}{3}$				
60.	Which of	the following solutions will exhib	t higl	nest boiling	point ?			
	· 1)	$0.01~\mathrm{M}~Na_2SO_{4_{(aq)}}$		0.01 M KA			e e	2 4 21 3
	3)	$0.015~\mathrm{M}~\mathrm{urea}_{(aq)}$	4)	0.015 M g	lucose _{(e}	70)	· · ·	* * * * * * * * * * * * * * * * * * *