Chemistry 1

1.	(1) sp ²	(2) sp3		(4) sp	
2.	(1) n-pent (2) 2, 2-di (3) 2, 3-di	_		f pentane :	
3.				CI ₂ and CCI ₄ are respectively: and 4 (4) 2 and 4	
4.	Which of the (1) C ₆ H ₅	_	solves in lonic (3) CCI ₄		
5.	The conjugat		s: (3) both two	(4) none	
	titration as a (1) NH ₄ O (2) NH ₄ O (3) NH ₄ O (4) NaOH Which of the	suitable indic H and HCI H and HCOOH H and C ₂ H ₄ O ₂ and C ₂ O ₄ H ₂	rator :	sed in which of the following typ	e of
	. ,	. ,	, ,	iderite (4) Limonite	
8.	ml.of 3.0 M N	NaCI and 200	f chloride ions ml. of 4.0 M B (3) 5.0 M	-	
9.	Which of the	following has	s least bond end (3) N_2^+	nergy:	
10.	Which of the (1) O ₂ ⁻²	following spe (2) O ₂ ⁺	ecies has highes	est bond energy : $(4) O_2$	
11.	(1) 1, 3-cy (2) pyridin (3) furane (4) thioph	vclobutene ne	npound is not :	aromatic :	

12. Which of the following compound is used as refrigerant: (1) CCI ₂ F ₂ (2) CCI ₄ (3) CF ₄ (4) Acetone
13. Which of the following is weak acid : (1) C_6H_6 (2) CH_3 - $C\equiv CH$ (3) $CH_2=CH_2$ (4) CH_3 - $C\equiv C$ - CH_3
14. L.P.G. mainly consist of the following: (1) Methane (2) Hydrogen (3) Acetylene (4) Butane
15. The solubility product of CaCo ₃ is 5 x 10 ⁻⁹ . The solubility will be : (1) 2.5×10^{-5} (2) 7×10^{-5} (3) 2.5×10^{-4} (4) 2.2×10^{-9}
16. The outer electronic configuration of alkali earth metals is : $(1) \text{ nd}^{10}$ $(2) \text{ ns}^{1}$ $(3) \text{ np}^{6}$ $(4) \text{ ns}_{2}$
17. The nature of 2, 4, 6-trinitrophenol is: (1) Neutral (2) Basic (3) Acidic (4) Weak basic
18. Which of the following group is sharp ortho and para directive : (1) $-C_6H_5$ (2)-OH (3) $-CH_3$ (4) $-CI$
19. By which of the following process hydrocarbons are found from petroleum: (1) combustion (2) fractional distillation (3) addition (4) all above
20. A sample of petroleum contains 30% n-heptane, 10% 2-methyl hexane and 60% 2, 2, 4-trimethyl pentane, the octane no. of this sample will be:
(1) 30% (2) 60% (3) 10% (4) 70%
21. In which of the following halogens p-electrons does not take part in resonance:
(1) CH_2 = CH - CH_2Cl (2) BrC_6H_5
$(3) C_6H_5C1 \qquad (4) CH_2=CHC1$
 22. Which of the following statement is false: (1) 40% solution HCHO is known as formalin (2) HCHO is least reactive in its homologous series (3) The B.P. of isovarelaldehyde is less than n-varelaldehyde (4) The boiling point of ketones are higher than that of aldehydes
23. If $n + 1 = 8$ then the expected no. of orbitals will be:
(1) 4 (2) 9 (3) 16 (4) 25

24	Alc. KOH	2Cl ₂ Ca(C	OH) ₂	compound C will be :	
44.				e tetra chloride (4) Both 2 and 3	;
25.		following is le	•		
26.	The laughing (1) N ₂ O ₄	g gas is : (2) NO	(3) N ₂ O	(4) N ₂ O ₅	
27.		n ion concentr		ntion is 3.98 x 10 ⁻⁶ mole per liter	. The
	-	(2) 5.8		(4) 5.9	
28.	The reaction (1) Butane	of sodium ace (2) Ethane	tate and sodal (3) Methane	9	
29.	(1) Carbamic	e following acid acid (2) Ba d (4) sud	rbituric acid	ntain – COOH group :	
30.		following con (2) XeF ₄		one does not exists : (4) XeF ₂	
31.	FeSO₄, 7H₂O (1) Mohr's sa		triol (3) Gr	reen vitriol (4) White vitriol	
32.	formed whic (1) Bismith ox		(2) Bismith o	iluted with water white precipi xide iese	tate is
33.	(3) dichlo		id		
34.	(1) This d(2) This d(3) It does	tement regard loes not perform loes not gives e s not disappear s not decolouris	n polymerization limination reac the colour of d	tion ilute KMnO ₄ solution	
35.	Which of the (1) C ₆ H ₅ NH ₂	following is st (2) CH	trongest base : H ₃ NH ₂	3	

(3) NH ₃	(4) CH ₃ CONH ₂		
36. Which of the follow easily:	ing aromatic com	pound gives sulpl	nonation reaction very
(1) Chlorobenzene	(2) Nitrobenzene	(3) Toluene	(4) benzene
37. The geometry of I3 -(1) Triangular) Tetrahedral	(4) T-shape
38. The half life of a rac		,	•
560 days will becom (1) 1 gm (2) 16		m. (4)	<u>1 g</u> m. 2
39. The volume concent (1) 5 (2) 11	tration of hydroge .2 (3) 22.4	_	concentration will be
40. Which of the follow (1) Ethane (2) Pro	ing on combustion opane (3) Metha		energy:
Anhy. 41. C6H6 + CH3CL (1) Gattermann (3) Friedel-Craft	(2) Reimer-tiema		of above reaction is :
42. The oxidation state (1) + 4 (2) + 3			
43. The natural rubber (1) 1, 3- butadiene			one of these
44. Nylone-66 is a : (1) polyester (2) po	lyamide (3) polyacrylate	(4) none of these
45. $2NO(g) + CI_2(g) \rightarrow$	2 NOCI The equi	librium constant	for this reaction is :
(1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]}$			
(3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$	(4) $K_c = $	[2NOCI] [2NO][CI]	
A C ₆ H ₆ + CO + HCI (1) anhydrans ZnO (3) anhydrous AICO ₃	(2) $V_2O_5/450^0$ C	CI here A is :	

47.	The values of C) respective (1) CH ₃ COOH	ly. The s	trongest acid	amongst t		nd 1.75 x 10 ⁻⁵ (at 25 ⁰					
48.	88. In which of the following carbon atom (asterisk) is asymmetric: (1) CH ₃ CH ₂ CH (CH ₃) CH ₂ OH (2) CH ₃ CH ₂ CH (CH ₃) CHOH (3) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH (4) CH ₃ CH ₂ CH (CH ₃)CH ₂ OH										
49.	. Benzene reac	ts with (CH ₃ COCI in			d AICI ₃ to form: (4) Chlorobenzene					
50.	Which of the (1) H ₂ S	followin (2) HNO		agent :) K ₂ Cr ₂ O ₇						
51.	. In which of the mechanism is		•	oride the p	ossibility o	f SN ₁ reaction					
	(1) (CH ₃) ₂ CH	ICI ($(2) (CH_3)_3C-C$	CI (3)) CH ₃ CI	(4) CH ₃ CH ₂ CI					
52.	The energy p (1) 28.2 MeV			•		u is : (4) none of these					
53.	The mole of h (1) 5 x 10 ²		ion in 50 ml	of 0.1 M (3) 5 x 10	HCI solutio	on will be : 10 ⁻²					
54.	(1) Alipha (2) Aroma (3) Alipne (4) None o	tic alcoh tic hydro tic hydro	ol ocarbon								
55. C ₆ l will be			· +	The	products in	the above reaction					
	(1) C_6H_5I+CH (3) C_6H_5OH+C		, , -	H ₅ CH ₃ +HC H ₆ +CH ₃ OI	I						
56	F3 is: (1) Bronsted l	base ((2) Lewis base	e (3) Lewis	s acid (4) B	ronsted acid					
57. WI	hich of the foll (1) Benzaldeh	_	ompound given (2) Aniline	es violet co (3) Nitrob		FeCI ₃ solution: (4) Phenol					
58. Hy	po solution fo (1) Na ₅ [Ag(S ₂			owing com ₃ [Ag(S ₂ O ₃)		ound with AgCI:					

$(3) Na2{Ag(S2)$	$O_3)_2]$	(4) Na3[Ag(S2	$O_3)_3]$	
59. Molecular oxygen (1) ferro magnetic		c (3) par	a magnetic	(4) non magnetic
60. Bonds in acetylen	e are :			
(1) 2π bonds	(2) one π bond	$(3) 3\pi$	bonds (4) n	one of these
(2) It gives tert	tiary alcohol wi tiary alcohol wi ondary alcohol	ith acetamide ith acetone with acetaldel	•	
62. Which of the follo (1) C ₂₀ H ₄₂	owing alkane ((2) C ₃ H ₈	_		mal temperature :
(1) Potassium (2) AgNO ₃ solu (3) Water (4) All above	chloride solutio		ıum in :	
64. The weight of a b (1) 78 gm.			(4) n	one of these
65. CuFeS ₂ is: (1) iorn pyrites	(2) mal	lachite (3) cha	alcosite (4) c	halcopyrites
66. Primary halides f (1) SN ₁		_	mechanism (4) none of t	
	o the same gro	oup of periodic (3) solid	c table, CO ₂ (4) none of t	is a gas and SiO ₂ is a:
(2) bond energ(3) the ionizati	ociation due to	hydrogen bond oxygen is high		
69. "The negative par unsaturated asymme hydrogen atoms." Th (1) Markownik (2) Peroxide ef	tric carbon at his statement is koff's law	om which is li		_

(3) Bayer's law of distortion

	(4) none of the	hese				
70 Th	e conjugate l	hase of N	NH3 is	•		
70. 111					(4) NH ₂ ⁺	
71. (a)					ond in the molecules are r	espect
	(1) (a) 2,2 (b					
	(3) (a) 2,1 (b) 2,3	(4) (a)) 2,1 (b) 2,1		
		followir	ng com	pound there	are maximum no. of sp ² h	ybrid
atoms:	(1) Benzene		(2) 13	3 5-hexatrien	e	
	(2) 1,2,4-hex					
72 Th	a ahana af th	a malaa	ula hav	ina huhwid a	whitala of 200/ above atom	will b
13. 1N	e snape of th (1) octahedra			ing nybria d trahedral	orbitals of 20% character	WIII DE
	(3) square pl				ramidal	
	. , 1		, ,			
			5. If th	e dilution of	this solution is increased	by 100
ine pH	value will b			(3) 0	(4) 8	
	(1) 3	(2) 1			(7) 0	
	$(1) C_{2}H_{2}$	$(2) C_{\alpha}$	H.	carbon will b		
76.	(1) C ₂ H ₂ The formul (1) SrSO ₄	a of Cel	estine i	(3) C ₂ H ₆	(4) C_3H_4	
	The formul (1) SrSO ₄	a of Cel (2) Sr -Gu + Cl	estine i CO_3	(3) C ₂ H ₆ (3) SrO required an	(4) C_3H_4	react
77.	The formul (1) SrSO ₄ CuCl ₂ + → (1) 4 faraday Nitrogen do (1) The b	a of Cel (2) Sr Gu + Cl oes not f condener ent d-ord longs to	estine i CO ₃ l ₂ . The (2) 2 i forms N rgy of N pitals ar V group	(3) C ₂ H ₆ s: (3) SrO required and faraday (3) IF ₅ because I≡N is very here not present	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this 1 faraday (4) 3 faraday igh	react
77. 78.	The formul (1) SrSO ₄ CuCl ₂ + → (1) 4 faraday Nitrogen do (1) The b (2) Vacc (3) N bel (4) There	Gu + Cl Oes not foodenerent d-orderent d-orderent de is inertal tempered by 2 ased by 2 ased by 10	estine i CO ₃ l ₂ . The (2) 2 f corms N gy of N oitals ar V group effect cature v times 2 times 0 times	(3) C ₂ H ₆ s: (3) SrO required and faraday (3) NF ₅ because N≡N is very have not present powhen raised	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this 1 faraday (4) 3 faraday igh	
77. 78. 79.	The formul (1) SrSO ₄ CuCl ₂ + → (1) 4 faraday Nitrogen do (1) The b (2) Vacc (3) N bel (4) There The normal (1) lower (2) incre (3) lower (4) incre	Gu + Cl Gu + Cl Des not for the condener don't don't be is inertal temperated by 2 ased by 2 ased by 10 ased	estine i CO ₃ l ₂ . The (2) 2 f forms N rgy of N ritals ar V group effect rature v times 2 times 0 times 10 times	(3) C ₂ H ₆ s: (3) SrO required and faraday (3) IF ₅ because I≡N is very have not present powhen raised	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this 1 faraday (4) 3 faraday igh	ion wi

81. $[Cu(NH_3)_4]^2$ (1) dsp^2	snows the for (2) sp ³ d	ollowing hybri (3) dsp ³	dization: (4) sp ³
capable to p	recipitate all		ns in it. Which of the following ion is added in this solution : $(4) \text{ Cu}^{2+}$
83. Fool's gold in (1) Cu ₂ S		(3) Al ₂ O ₅	(4) CuFeS ₂
84. In which of (1) OF ₂	the following (2) HgCl ₂	compound the	e central atom is in sp^2 hybrid state : (4) NH_2^+
			from C ₄ H ₇ are : (4) 8
* *	ng agent knocking agent hing agent	-	orks as :
87. The alkaline (1) dehydroge			esterification (4) saponification
88. The degree (1) 6.71 x 10 (3) 0.4x1.8x1	of ionization of 3 (2) 1.	of 0.4 M acetic .6x10 ⁻³ .8x10 ⁻⁵	e acid will be : $(K_a = 1.8 \times 10^{-5})$
_		production of (3) H ₂ SO ₄	f which of the following : $(4) O_3$
the followin (1) NH ₄ C (2) NH ₄ C	g titrations it)Hand HCI)H and CH₃CC H and HCI	can be used as	and the pH range is 8-10. In which of s an indicator :
91. Number of (1) pb ²⁺		one molecule (3) Ba ²⁺	
92. Which of th (1) Mn ⁺⁶	e following sp (2) Ni ²⁺	pecies shows th	ne maximum magnetic moment : (4) Ag^+
93. K sn value of	f CaF ₂ is 3.75	$\times 10^{11}$ The sol	ubility will be :

(1) 1.45x10 ⁻¹¹ mol/ (2) 3.45x10 ⁻⁴ mol/l (3) 2.05x10 ⁻⁴ mol/l (4) 3.75 x 10 ⁻¹¹ mo	liter ⁻¹ liter ⁻¹		
94. When Pb ₃ O ₄ is heate (1) pbO ₂ and pb(No (2) pbO and pb(No (3) pbO ₂ (4) pbO	$(O_3)_2$	3 it gives :	
95. C-H bond length is le (1) Acetylene (2) Met		(4) Ethane	
96. The minimum nos. of isomerism will be: (1) Seven (2) four		etones which will show chain (4) five	n
CaCI ₂ :	-	nd could not be dried by an	hydrous
98. Which of the following water: (1) Nitrobenzene	-	white precipitate with bron	nine
99. Gypsum is: (1) CaSO ₄ .H ₂ O (3) 2CaSO ₄ . 2H ₂ O			
100.Which of the followin	ng carbonium ion is	most stable :	
(1) CH ₃ -C—CH ₃			
CH ₃ + (3) CH ₃ 0CH-CH ₃	+ (4) CH ₃		

ANSWER SHEET

1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										