1. $\mathbf{u} \mathbf{L}+\mathbf{M m}+\mathrm{Nn} \rightarrow \boldsymbol{p} P+q Q+r R$ the equilibrium constant for this reaction is :
(1) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{P}]^{\mathrm{P}}[\mathrm{Q}]^{\mathrm{q}}[\mathrm{R}]^{\mathrm{r}}}{[\mathrm{L}]^{\mathrm{l}}[\mathrm{M}]^{\mathrm{m}}[\mathrm{N}]^{\mathrm{n}}}$
(2) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{L}]^{\mathrm{l}}[\mathrm{M}]^{\mathrm{m}}[\mathrm{N}]^{\mathrm{n}}}{[\mathrm{P}]^{\mathrm{p}}[\mathrm{Q}]^{\mathrm{q}}[\mathrm{R}]^{\mathrm{r}}}$
(3) $\mathrm{K}_{\mathrm{c}}=\frac{\sqrt{\mathrm{L}}][\mathrm{M}][\mathrm{N}]}{[\mathrm{P}][\mathrm{Q}][\mathrm{R}]}$
(4) $\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{qmn}}{\mathrm{pqr}}$
2. Due to low ionization potential the alkalimetals are :
(1) weak oxidizing agent
(2) strong oxidizing agent
(3) strong reducing agent
(4) none of these
3. Current order of radius is :
(1) $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}$
(2) $\mathrm{K}^{+}>\mathrm{N}^{\mathrm{a}}+>\mathrm{Li}^{+}$
(3) $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Li}^{+}$
(4) all same
4. If there is an uncertainity in the position of an electron is zero then uncertainity in the momentum will be :
(1) \underline{h}
(2) infinite
(3) $n h / 2 \pi$
(4) zero
2π
5. The boiling point of water is high due to :
(1) high ionic product
(2) hydrogen bonding
(3) heavy weight
(4) high dielectric efficient
6. Elements of the same group are :
(1) Mg, Ba
(2) C,S
(3) H, Be
(4) As, se
7. $\mathrm{Ch}_{3} \mathbf{C O O A g}+\mathrm{Br}_{2} \rightarrow \mathbf{G H}_{3} \mathrm{Br}+\mathrm{AgBr}+\mathrm{CO}_{2}$. The above reaction is known as :
(1) Hoffmann mustard oil reaction
(2) Wurtz fitting reaction
(3) Hunsdiecker reaction
(4) Volhard zelinsky reaction
8. $1 s^{2} 2 s^{2} p^{6} 3 s^{2} \mathbf{p}^{2}$ configuration shows the :
(1) f-flock elements
(2) p-block elements
(3) s-block elements
(4) d-block elements
9. The required condition for precipitation is :
(1) ionic product $>K_{\text {sp }}$
(2) saturated solution
(3) ionic product $<\mathrm{K}_{\text {sp }}$
(4) dilute solution
10. The molarity of an electrolyte $\mathrm{Ba} \mathrm{CrO}_{4}$ is $1.415 \times 10^{-5} \mathrm{M}$, the value of solubility product will be :
(1) 2×10^{-8}
(2) 2.02×10^{-12}
(3) 2.25×10^{-6}
(4) 2×10^{-10}
11. Lewis acid is :
(1) $\mathrm{NH}_{2} \mathrm{NH}_{2}$
(2) NH_{3}
(3) AICI_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
12. There are three unpaired electrons in \mathbf{N} according to :
(1) Pauli's law
(2) Hund's law
(3) Aufbau's law
(4) Stark law
13. The $\mathbf{p H}$ values of solution A and B are 2 and 6 resp. Acid strength of A in comparision to B will be :
(1) 4 times
(2) 2 times
(3) 10-4 times
(4) 10000 times
14. In which of the following test, $\mathrm{K} \mathrm{MnO}_{4}$ is used to testing unsaturation :
(1) Mulliken-Barker test
(2) Bayer test
(3) Fehling test
(4) Schiff test
15. $\mathrm{Ch}_{3} \mathrm{COCI}+\mathrm{H}_{2} \mathrm{Pd} / \mathrm{BASO}_{4} \longrightarrow A+\mathrm{HCI}$ In the above reaction A is :
(1) Methanol
(2) Acetic acid
(3) Acetaldehyde
(4) Ethenol
16. Removing of sulphur by heating of pyrites is called :
(1) Bessemeerisation
(2) Roasting
(3) Smelfing
(4) Calcination
17. $\mathrm{Ch}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{MgX} \xrightarrow[(2)]{\mathrm{H}_{2} \mathrm{O}}$ A here A is :
(1) 2-propanol
(2) 1-propanol
(3) Acetone
(4) Acetaldehyde
18. Which of the following has not coloured salt :
(1) Cu^{+}
(2) Fe^{+}
(3) Cu^{2+}
(4) CO^{2+}
19. Nitration of the benzene is a reaction of :
(1) Nucleophillic substitution
(2) Nucleophillic addition
(3) Electrophillic substitution
(4) Electrophillic addition
20. Which of the following is most reactive for nitration :
(1) Netrobenzene
(2) Clorobenzene
(3) Talione
(4) Benzene
21. Coversion of \mathbf{H} into H ion is a :
(1) Reduction
(2) Free radical fission
(3) Oxidation
(4) Fission of hydrogen
22. In which of the following there is no resonance :
(1) Ethyl amine
(2) Phenol
(3) Anilene
(4) Benzene
23. Why does $\mathrm{NH}_{4} \mathrm{CI}$ is added first in $\mathrm{NH}_{4} \mathrm{OH}$ in the qualitative analysis :
(1) for pure precipitation
(2) for making dilute solution
(3) to reduce the concentration of OH^{-}ion
(4) to increase the concentration of OH^{-}ion
24. The hydrolysis of esters by base is known as :
(1) Dehydration
(2) Saponification
(3) Dehelogenation
(4) Dehydrogenation
25. By which of the following, oxalic acid reacts at $110^{0} \mathrm{C}$ to form formic acid :
(1) Pri. Amine
(2) Glycerol
(3) Acetaldehyde
(4) Acetone
26. $M_{x} A_{y} \rightarrow{ }_{x} M^{y+}+y A^{x-}$ the true statement for this reaction is :
(1) $K_{\text {sp }}=X^{x} S^{x+y}$
(2) $K_{\text {sp }}=S^{x+y}$
(3) $K_{s p}=X^{x} Y^{y} S^{x+y}$
(4) $\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{2}$
27. By which of the following enzyme in the process of fermentation glucose and fructose are converted into alcohol :
(1) Diastase
(2) Xymase
(3) Invertase
(4) Maltase
28. Nitration of benzoic acid gives :
(1) 4-dinitrobenzoic acid
(2) 2,4-dinitrobenzoic acid
(3) 2-nitrobenzoic acid
(4) 3-nitrobenzoic acid
29. Which of the following is the main particle of petrol :
(1) Alkyle helide
(2) Compounds containing oxygen
(3) Compounds containing sulphur
(4) Mixture of alkanes
30. The order of dehydration of alcohols by concentrated $\mathbf{H}_{2} \mathrm{SO}_{4}$ is :
(1) $t>s>p$
(2) $p>s>t$
(3) $s>t>p$
(4) All same
31. Which of the following forms oilynitrosoamine with aq. $\mathrm{HNO}_{\mathbf{2}}$:
(1) Aniline
(2) Dimethylamine
(3) Ethylamine
(4) Methylamine
32. Reducing agents are those which :
(1) domates electrons
(2) forms covalent bond
(3) shares electrons
(4) gains electrons
33. In acidic medium the oxidation state of Mn in KMnO_{4} change from :
(1) +6 to +2
(2) +7 to +3
(3) +7 to +4
(4) +7 to +2
34. $A+B \stackrel{\rightarrow+}{\leftarrow}$ C $+D$ in this reaction initial concentration A and B are mole each of the equilibrium constant is k. If the concentrations of A and B will be done 2 and 3 mole resp. the equilibrium constant will be :
(1) half
(2) unchanged
(3) four times
(4) 2 times
35. Which of the following are homologous :
(1) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$
36. The general formula of alkyne is :
(1) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
(2) $\mathrm{C}_{2} \mathrm{H}_{2 \mathrm{n}-2}$
(3) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
(4)None above
37. According to Bohr, electron can move around the nuclease. If the principal quantum no is \mathbf{n} then the angular momentum will be :
(1) nh
(2) h / π
(3) $n \pi / h$
(4) $\mathrm{nh} / 2 \pi$
38. At reversible equilibrium :
(1) the concentration of matter are equal
(2) the forward and backward rates are equal
(3) the backward rate will be higher
(4) the forward rate will be higher
39. The hydrolysis constant $\left(k_{h}\right)$ of $\mathbf{C H}_{3} \mathrm{COONa}$ at $25^{0} \mathrm{C}$ will be : $\left(\mathrm{K}_{\mathrm{a}}=\mathbf{1 . 8 \times 1 0 ^ { - 5 }}\right)$
(1) 5.55×10^{-5}
(2) 5.55×10^{-10}
(3) 5.55×10^{-12}
(4) 5.55×10^{-11}
40. If the ladius of I Bohr orbit of H is a_{0} then the radius of III Bohar orbit will be :
(1) $12 \mathrm{a}_{0}$
(2) a_{0}
(30 $9 \mathrm{a}_{0}$
(4) $3 \mathrm{a}_{0}$
41. The knowledge of energy and position of an electron is found from :
(1) Principal quantum no.
(2) Azimuthal quantum no.
(3) Magnetic quantum no.
(4) Spin quantum no.
42. The conjugate acid of CI is :
(1) HCI
(2) HClO_{3}
(3) HClO_{2}
(4) HClO_{4}
43. OH^{-}and $\mathrm{H}_{2} \mathrm{O}$ both are according to Lewis :
(1) Acids
(2) Bases
(3) Acidand base
(4) Base and acid
44. Azimthal quantum no. is represented by :
(1) s
(2) n
(3) 1
(4) m
45. The values of \boldsymbol{v} and \mathbf{n} for $2 p$ orbital are :
(1) $\mathrm{l}=2, \mathrm{n}=2$
(2) $t=2, n=1$
(3) $t=0, n=1$
(4) $t=1, n=2$
46. Which of the following are present in the aqueous solution of $\mathbf{N a}_{2} \mathbf{C O}_{3}$:
(1) $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{Na}^{+}, \mathrm{OH}^{-}$ion
(2) $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{OH}^{-}, \mathrm{CO}_{3}{ }^{2-}$
(3) CO_{3}^{-2} ion
(4) Na^{+}and OH^{-}
47. The 10. of an unpaired electrons in the configuation $1 s^{2}, 2 s^{2} p^{3}$ are :
(1) 5
(2) 3
(3) 2
(4) 1
48. The $\mathbf{p H}$ value of pure water is 7 . If a salt X is added in the water the $p H$ value raised and become 13 . The salt X will be:
(1) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
(2) $\mathrm{NH}_{4} \mathrm{CI}$
(3) $\mathrm{CH}_{3} \mathrm{COONa}$
(4) NaCI
49. The magnetic quantum no. shows :
(1) orientation of orbitals
(2) shape of orbitals
(3) size of orbitals
(4) All
50. The value of electronega-fivity in a column from right to left becomes:
(1) not certain change
(2) equal
(3) reduces
(4) increases
51. $\mathrm{PCI}_{5} \stackrel{\rightarrow}{\leftarrow} \mathrm{PCI}_{3}+\mathrm{CI}_{2}$ In this reaction when pressure increases :
(1) equilibrium constant becomes double
(2) more Cl_{2} produces
(3) The dissociation of PCI_{5} increases
(4) The dissociation of PCI_{5} decreases
52. Shape of \mathbf{s} orbital is :
(1) double dumb bell (2) spherical (3) dumb bell (4) none of these
53. The correct order of ionization potential is :
(1) $\mathrm{N}>\mathrm{C}>\mathrm{B}$
(2) $\mathrm{N}>\mathrm{B}>\mathrm{C}$
(3) $\mathrm{C}>\mathrm{N}>\mathrm{B}$
(4) $\mathrm{N}<\mathrm{C}<\mathrm{B}$
54. CCI_{4} is more covalent than LiCI because :
(1) dipole moment of $\mathrm{Li}-\mathrm{CI}$ is constant
(2) dipole moment of CCL_{4} is zero
(3) Li-CI bond is polar
(4) C-CI bond is non polar
55. Which of the following is the no. of paired electrons in $\mathbf{N}_{\mathbf{2}}$ molecule :
(1) 2
(2) 6
(3) 5
(4) 4
56. Strangest electronegative element is :
(1) I
(2) F
(3) CI
(4) Br
57. When atomic no. of alkali metal increases :
(1) electron affinity increases
(2) ionic radius increases
(3) electro negativity increases
(4) ionization potential increases
58. The C -CI bond of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CI}$ incomparision with $\mathrm{CH}_{3} \mathrm{CI}$ is :
(1) long and weak
(2) long and strong
(3) short and weak
(4) short and strong

The name of the above reaction is:
(1) Wurtz reaction
(2) Friedel craft reaction
(3) Schoften Bauman reaction
(4) Gattermann reaction
60. Which of the following one has electronic configuration of transition element
:
(1) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$
(2) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
(3) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$
(4) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
61. In which of the following conditions benzene reacts with $\mathrm{H}_{2} \mathrm{SO}_{4}$:
(1) when HNO_{3} is added
(2) with conc. and hot $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) with dilute and hot $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) with dilute and cold $\mathrm{H}_{2} \mathrm{SO}_{4}$
62. The no's of σ ond π かonds in tetracynoethylene are :
(1) 3σ and 4π
(2) 8σ and 7π
(3) 9σ and 9π
(4) 9σ and 8π
63. Which of the following is diamagnetic molecule :
(1) $\mathrm{O}_{2}{ }^{2-}$
(2) $\mathrm{O}_{2}{ }^{-}$
(3) $\mathrm{O}_{2}{ }^{+}$
(4) O_{2}
64. To recognize the position and velocity of an electron around the nucleas at a time is :
(1) could not say any thing
(2) sometime possible and some time not possible
(3) impossible
(4) possible
65. Which of the following is found from oxidation of propionaldehyde :
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
(2) HCOOH
(3) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$
66. According to Bohr when an electron reaches at the lowest level then :
(1) Bohr theory does not explains
(2) There is no change in energy
(3) Energy of electron reduces
(4) Energy of an electron increases
67. The $\mathbf{p H}$ value of a solution is 5 . The hydrogen ion concentration will be :
(1) 10^{-8}
(2) 10^{-2}
(3) 10^{-5}
(4) 10^{-7}
68. The molarity of a solution in which $5.3 \mathrm{gm} . \mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissohed in 500 ml . will be:
(1) 1.0 M
(2) 0.1 M
(3) 0.25 M
(4) 0.2 M
69. Cupellation method is used the extraction of the following :
(1) Zn
(2) Ag
(3) Fe
(4) Cu
70. The compound which is found from the distillation of calcium acetate is :
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2}$
(2) HCHO
(3) $\mathrm{CH}_{3} \mathrm{CHO}$
(4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
71. By which of the following process hydrocarbon is found from pertrlium :
(1) addition
(2) combustion
(3) fractional distillalion
(4) all above
72. If a compound containing more than one functional groups. In the nomenclalure, the preferace is given to :
(1) principal functional group
(2) triple bond
(3) double bond
(4) other functional group
73. Which of the following is tertiary carbonium ion:
\oplus
(1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$
(2) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2}$
(4) CH_{3}
74. Which of the following is true statement :
(1) Acetylene gives white precipitate with AgNo_{3} and red precipitate with $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
(2) Acetylene gives red precipitate with AgNO_{3} and white precipitate with $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
(3) Acetylene gives white precipitate with both
(4) Acetylene gives red precipitate with both
75. Which of the following is electrophilic :
(1) R-O-R
(2) NH_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) BF_{3}
76. In which of the following solution methyl orange gives red colour :
(1) HCI
(2) NaOH
(3) $\mathrm{CH}_{3} \mathrm{COONa}$
(4) $\mathrm{CH}_{3} \mathrm{COONH}$
77. The $\mathbf{p H}$ value of water is T. When a salt X is dissobed the $\mathbf{p H}$ value becomes 13. The salt X will be :
(1) salt of weak acid and weak base
(2) salt of weak acid and strong base
(3) salt of strong acid and weak base
(4) salt of strong acid and strong base
78. For which of the following titration phenolphthalein is suitable indicator :
(1) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{CI}$
(2) $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH
(3) HCI and $\mathrm{NH}_{4} \mathrm{OH}$
(4) $\mathrm{H}_{2} \mathrm{CO}_{3} \& \mathrm{~N}_{2} \mathrm{CO}_{3}$
79. The true statement for $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is :
(1) $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{Kw}}{\mathrm{K}_{\mathrm{a}}}$
(2) $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{Kw}}{\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}}$
(3) $\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{Kw}}{\mathrm{K}_{\mathrm{b}}}$
(4) All above
80. The IUPAC name of CH_{3}

$\mathrm{CH}=\mathrm{CH}_{2}$ is :
(1) 3,3 dimethyl-3-butene
(2) 4,4-dimethyl-2-butene
(3) 3,3-dimethyl-l-butene
(4) 3,3-dimethyl-2-butene
81. Which of the following set of quantum nos. are not possible :
(1) $3,2,3,1 / 2$
(2) $5,0,0,1 / 2$
(3) $3,2,-3,1 / 2$
(4) $5,1,0,-1 / 2$
82. For a solution mole nos. of solute and whole solution are $\mathbf{2 0}$ and 80 receptively then the mole fraction of solute will be :
(1) 0.35
(2) 4.0
(3) 0.4
(4) 0.25
83. The degree of lonisation of an electrolyte depends upon :
(1) size of solvent molecules
(2) nature of solvent molecules
(3) lonisation potential of solvent molecules
(4) shapce of solvent molecules
84. The chemical properties of an element depends upon :
(1) atomic no. and volume
(2) atomic weight and volume
(3) atomic no. and electronic configuration
(4) atomic no. of atomic weight
85. Paramagnetism is found in elements when :
(1) all electrons are paired
(2) octet is complete
(3) all electrons are shared
(4) unpaired electrons are present
86. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCI}_{3}+\mathrm{KOH} \rightarrow(\mathrm{A})+\mathrm{KCI}+\mathrm{H}_{2} \mathrm{O}$ here A is :
(1) $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{CI}) \mathrm{NH}_{2}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
(3) $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{NH}_{2}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}$
87. Ethane, ethane and ehtyne. In which of the above three. C-H bond energy is highest :
(1) in $\mathrm{C}_{2} \mathrm{H}_{4}$
(2) in $\mathrm{C}_{2} \mathrm{H}_{6}$
(3) in $\mathrm{C}_{2} \mathrm{H}_{2}$
(4) same
88. The correct order of strength of halogen acids is :
(1) $\mathrm{HI}>\mathrm{HCI}>\mathrm{HBr}>\mathrm{HF}$
(2) $\mathrm{HCI}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HI}$
(3) $\mathrm{HF}<\mathrm{HCI}<\mathrm{HBr}<\mathrm{HI}$
(4) $\mathrm{HF}>\mathrm{HCI}>\mathrm{HBr}>\mathrm{HI}$
89. Which of the following pair has same electronic configuration :
(1) $\mathrm{K}^{+}, \mathrm{Rb}^{+}$
(2) $\mathrm{Na}^{+}, \mathrm{K}^{+}$
(3) $\mathrm{K}^{+}, \mathrm{Ca}^{2+}$
(4) $\mathrm{Li}^{+}, \mathrm{NO}^{+}$
90. Alkali metal gets inert gas configuration by :
(1) making coordination bond
(2) sharing an electron
(3) gain of an-electron
(4) loss of an electron
91. The polarity of covalent bond between two atoms depends upon :
(1) nos. of an unpaired electrons
(2) electronic configuration of an atom
(3) electronegativity of an atom
(4) lonisation potential of an atom
92. The shape of an ammonia molecule is :
(1) pyranide
(2) tetrahedral
(3) triangular
(4) linear
93. The important copper ore is :
(1) Chalocopyrites
(2) Alumina
(3) Bauxite
(4) Sedarite
94. Cryolite is added in the extraction of aluminium because of :
(1) Oxidation of bauxite
(2) To remove bauxite from anode
(3) Reduction of bauxite
(4) To fuse bauxite
95. By which of the following regent aldehyde and ketone is distinguished :
(1) Fehling solution
(2) Bayer solution
(3) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(4) O_{3}
96. Which of the following does not give precipitate with $\left(\mathbf{N a O H}+\mathbf{I}_{\mathbf{2}}\right)$:
(1) Ethanol
(2) Benzaldehyde
(3) Acetone
(40 Acetaldehyde
97. Sodium acetate + soda lime $\rightarrow \mathbf{A}$ here \mathbf{A} is :
(1) Butane
(2) Propane
(3) Ethane
(4) Methane

98. Diethyl ether is not a isomer of :

(1) Butanone (2) Butanol (3) Methyl isopropyl ether (4) Methyl propyl ether
99. By which of the following shiff reagent gives pink colour :
(1) Diethyl ether
(2) Acetaldehyde
(3) Methanol
(4) Acetone
100.In which of the following oxidation state of N is 1 :
(1) NH_{3}
(2) $\mathrm{N}_{2} \mathrm{O}$
(3) $\mathrm{NH}_{2} \mathrm{OH}$
(4) NO

ANSWER SHEET

$1 .(1)$	$2 .(3)$	$3 .(2)$	$4 .(2)$	$5 .(2)$	$6 .(1)$	$7 .(3)$	$8 .(2)$	$9 .(1)$	$10 .(4)$	$11 .(3)$
$12 .(2)$	$13 .(4)$	$14 .(2)$	$15 .(3)$	$16 .(2)$	$17 .(3)$	$18 .(1)$	$19 .(3)$	$20 .(3)$	$21 .(3)$	$22 .(1)$
$23 .(3)$	$24 .(2)$	$25 .(2)$	$26 .(3)$	$27 .(2)$	$28 .(2)$	$29 .(4)$	$30 .(2)$	$31 .(2)$	$32 .(1)$	$33 .(4)$
$34 .(2)$	$35 .(3)$	$36 .(2)$	$37 .(4)$	$38 .(2)$	$39 .(2)$	$40 .(3)$	$41 .(1)$	$42 .(1)$	$43 .(2)$	$44 .(3)$
$45 .(4)$	$46 .(2)$	$47 .(2)$	$48 .(3)$	$49 .(1)$	$50 .(3)$	$51 .(4)$	$52 .(2)$	$53 .(1)$	$54 .(3)$	$55 .(2)$
$56 .(2)$	$57 .(2)$	$58 .(4)$	$59 .(2)$	$60 .(3)$	$61 .(1)$	$62 .(3)$	$63 .(1)$	$64 .(3)$	$65 .(1)$	$66 .(3)$
$67 .(3)$	$68 .(2)$	$69 .(2)$	$70 .(4)$	$71 .(3)$	$72 .(1)$	$73 .(1)$	$74 .(1)$	$75 .(4)$	$76 .(1)$	$77 .(2)$
$78 .(2)$	$79 .(2)$	$80 .(3)$	$81 .(3)$	$82 .(4)$	$83 .(2)$	$84 .(3)$	$85 .(4)$	$86 .(4)$	$87 .(3)$	$88 .(3)$
$89 .(3)$	$90 .(4)$	$91 .(3)$	$92 .(1)$	$93 .(1)$	$94 .(4)$	$95 .(1)$	$96 .(2)$	$97 .(4)$	$98 .(1)$	$99 .(2)$
$100(2)$										

