horizontal plane of projectile on a certain planet (with no surrounding) are given by:

$$y = (8t - 5t^2)$$
 metre and $x = 6t$ metre
where t is in second. The velocity with which

- where t is in second. The velocity with which the projectile is projected is: (a) 8 m/s (b) 6 m/s
- (c) 10 m/s (d) data is not sufficient 2. A body of mass a, moving with a velocity b collides with a body of mass c, at rest and sticks to it. They move together with a velocity given
- (a) $\frac{ac}{a+b}$ (b) $\frac{ab}{a+c}$ (c) $\frac{a+b}{ac}$ (d) $\frac{b+c}{cb}$ 3. The refractive index of a material is given by

by:

- the equation $n = \frac{A+B}{\lambda^2}$, where A and B are constants. The dimensional formula for B is: (a) $[M^0L^2T^{-1}]$ (b) $[M^0L^{-2}T^0]$ (c) $[M^0L^2T^{-2}]$ (d) $[M^0L^2T^0]$
- 4. A satellite is orbiting around the earth. By what percentage should we increase its velocity, so as to enable it escape away from the earth? (a) 41.4% (b) 50%
- (c) 82.8% (d) 100% 5. At what temperature, the hydrogen molecule will escape from earth's surface?
 - (a) 10^1 K (b) $10^2 \, \text{K}$ (c) 10^3 K (d) 10^4 K

(b) one-eighth the present year (c) one-fourth the present year

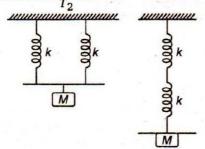
6. If the earth is at one-fourth of its present distance from the sun, the duration of the year will be: (a) half the present year

- An observer moves towards a stationary source of sound with a velocity one-tenth the ve of sound. The apparent increase in frequency is: (a) zero (b) 10% (c) 5% (d) 0.1%
- 8. When two conductors of charges and potentials C_1 , V_1 and C_2 , V_2 respectively are joined, the common potential will be:
 - (a) $\frac{C_1V_1 + C_2V_2}{V_1 + V_2}$ (b) $\frac{C_1V_1^2 + C_2V_2^2}{V_1^2 + V_2^2}$ (c) $C_1 + C_2$ (d) $\frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$
- 9. A weightless thread can bear tension upto 3.7 kg-wt. A stone of mass 500 g is tied to it and revolved in a circular path of radius 4 m in a vertical plane. If $g = 10 \text{ ms}^{-2}$, then the maximum angular velocity of the stone will be:

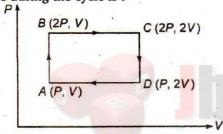
(b) 16 rad/s

- (c) $\sqrt{21}$ rad/s (d) 2 rad/s 10. The effective length of a magnet is 31.4 cm and its pole strength is 0.5 Am. If it is bent in the form of semicircle, what will be its magnetic
 - moment then? (a) 0.12 Am^2 (b) 0.1 Am^2

(a) 4 rad/s


molecules is:

- (c) 0.05 Am^2
- 11. Four molecules of a gas have speeds 1, 2, 3 and 4 kms⁻¹. The value of rms speed of the gas
 - (a) $\frac{1}{2}\sqrt{15} \text{ kms}^{-1}$ (b) $\frac{1}{2}\sqrt{10} \text{ kms}^{-1}$ (c) 2.5 kms^{-1} (d) $\sqrt{\frac{15}{2}} \text{ kms}^{-1}$
- 12. If there is change of angular momentum from J to 5J in 5 s, then the torque is:


(d) one-sixth the present year

13. Dyo springs having force constants k each are om arranged in parallel and in series. A mass M is

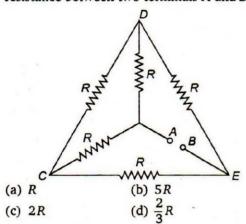
attached to two arrangements separately. If time period in first case is T_1 and in second case is T_2 , then ratio $\frac{T_1}{T_2}$ is :

- (a) 1.5
- (b) 3.2
- (c) 0.5
- (d) 2.1
- 14. If the work done in blowing a bubble of volume V is W, then the work done in blowing a soap bubble of volume 2V will be:
 - (a) W
- (b) 2W
- (c) $\sqrt{2}W$
- (d) 41/3W
- 15. An ideal monoatomic gas is taken round the cycle ABCDA as shown in figure. The work done during the cycle is:

- (a) PV
- (b) 2 PV
- (d) zero
- 16. A proton of energy 2 MeV is moving in a circular path in a magnetic field. What should be the energy of a deuteron, so that it also describes circular path of radius equal to that of the proton?
 - (a) 1 MeV
- (b) 2 MeV
- (c) 4 MeV
- (d) 0.5 MeV
- 17. A gas at NTP is suddenly compressed to one-fourth of its original volume. If y is supposed to be 3/2, then the final pressure is:
 - (a) 4 atm
- (c) 8 atm
- a series combination $R = 300 \Omega$ 18. In $L = 0.9 \text{ H}, C = 2.0 \,\mu\text{F}, \omega = 1000 \,\text{rad/s},$ the

- 19. n identical spherical drops each of radius r are charged to same potential V. They combine to form a bigger drop. The potential of the big drop will be:
 - (a) $n^{1/3}V$
- (b) $n^{2/3}V$
- (c) V
- (d) nV
- 20. The wavelength of maximum energy, released an atomic explosion was 2.93×10⁻¹⁰ m. Given that the Wien's constant is 2.93×10⁻³ m-K, the maximum temperature attained must be of the order of:

- (a) 10^{-7} K (b) 10^{7} K (c) 10^{-3} K (d) 5.86×10^{7} K
- 21. The pressure and density of a diatomic gas $\left(\gamma = \frac{7}{5}\right)$ change adiabatically from (P, d) to
 - (P', d'). If $\frac{d'}{d} = 32$, then $\frac{P'}{P}$ should be:
 - (a) $\frac{1}{128}$


- (d) none of these
- 22. A piece of wax weighs 18.03 g in air. A piece of metal is found to weigh 17.03 g in water. It is tied to the wax and both together weigh 15.23 g in water. Then, the specific gravity of
 - (a) $\frac{18.03}{17.03}$ (b) $\frac{17.03}{18.03}$ (c) $\frac{18.03}{19.83}$ (d) $\frac{15.03}{17.03}$
- 23. If a mica sheet of thickness t and refractive index u is placed in the path of one of interfering beams in a double slit experiment, then displacement of fringes will be:

 - (a) $\frac{D}{d}\mu t$ (b) $\frac{D}{d}(\mu 1)t$
 - (c) $\frac{D}{d}(\mu + 1)t$ (d) $\frac{D}{d}(\mu^2 1)t$
- 24. A ray of light propagates from glass (refractive index = $\frac{3}{2}$) to water (refractive index = $\frac{4}{3}$).
 - The value of the critical angle is:

 - (a) $\sin^{-1}\left(\frac{1}{2}\right)$ (b) $\sin^{-1}\left(\sqrt{\frac{9}{8}}\right)$
 - (c) $\sin^{-1}\left(\frac{8}{9}\right)$ (d) $\sin^{-1}\left(\frac{5}{7}\right)$
- 25. A ray of light suffers minimum deviation when incident at 60° prism of refractive index $\sqrt{2}$.

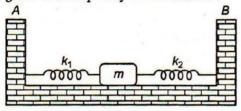
Download from www.JbigDeaL.com

- (c) 45°
- (d) 30°
- 26. Each of the resistance in the network shown in figure is equal to R. Find the equivalent resistance between two terminals A and B.

- 27. A gas in an air tight container is heated from 25°C to 90°C. The density of gas will:
 - (a) increase slightly
 - (b) remain the same
 - (c) increase considerably
 - (d) decrease slightly
- 28. If 2% of the main current is to be passed through the galvanometer of resistance G, the resistance of the shunt required is :
 - (a) $\frac{0}{49}$
- (c) 49 G
- (d) 50 G
- 29. The current in self-inductance L = 40 mH is increased uniformly from 1 A to 11 A in 4 milliseconds. The induced emf produced in L during this process will be:
 - (a) 100 V
- (b) 0.2 V
- (c) 440 V
- (d) 40 V
- 30. H⁺, He²⁺ and O²⁻ all having the same kinetic energy pass through a region in which there is a uniform magnetic field perpendicular to their velocity. The masses of H⁺, He²⁺ and O²⁻ are 1 amu, 4 amu and 16 amu, respectively. Then:
 - (a) H+ will be deflected most
 - (b) O²⁻ will be deflected most
 - (c) He²⁺ and O²⁻ will be deflected most
 - (d) all will be deflected most
- 31. The current gain of a transistor in common emitter mode is 49. The change in collector current and emitter current corresponding to the change in base current by 5.0 µA are:

- (a) $\Delta i_C = 245 \mu A$, $\Delta i_F = 250 \mu R$
- (b) $\Delta i_C = 252 \mu A$, $\Delta i_E = 145 \mu A$
- (c) $\Delta i_C = 125 \,\mu\text{A}$, $\Delta i_E = 250 \,\mu\text{A}$
- (d) $\Delta i_C = 252 \mu A$, $\Delta i_E = 230 \mu A$
- 32. In hydrogen atom when an electron jumps from second to first orbit, the wavelength of line emitted is:
 - (a) 0.563 Å
- (b) 4861 Å
- (c) 4102 Å
- (d) 1213 Å
- 33. How does the magnetic susceptibility x of a paramagnetic material change with absolute temperature T?
 - (a) $\chi \propto T$
- (b) $\chi \propto T^{-1}$
- (c) $\chi = constant$
- (d) $\gamma \propto e^T$
- Two identical heaters of 220 V, 1000 W are placed in parallel with each other across 220 V line, then the combined power is:
 - (a) 1000 W
- (b) 2000 W
- (c) 500 W
- (d) 4000 W
- 35. A bar of magnetic moment M is cut into two parts of equal length. The magnetic moment of either part is:
 - (a) M
- (b) 2M
- (c) $\frac{M}{2}$
- (d) zero
- 36. A rain drop of radius 0.3 mm has a terminal velocity of 1 m/s and the viscosity of 1 m/s and the viscosity of air is 18×10^{-5} poise. The viscous force on the drop is:

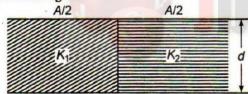
 - (a) 16.95×10^{-9} N (b) 1.695×10^{-9} N


 - (c) 10.17×10^{-9} N (d) 101.74×10^{-9} N
- 37. If magnetic material moves from stronger to weaker parts of magnetic field, then it is known
 - (a) anti-ferromagnetic
 - (b) ferromagnetic
 - (c) diamagnetic
 - (d) paramagnetic
- **38.** A charge q is placed at the centre of line joining two equal charges Q. The system of three charges will be in equilibrium, if q is equal to:

- The temperature of cold, hot junction of a thermocouple are 0°C and T°C respectively. The thermo-emf produced is $E = AT - \frac{1}{2}BT^2$.

If DAY/10.08 & 0.08 they temperature of com

inversion will be:


- (a) 100°C
- (b) 300°C
- (c) 400°C
- (d) 500°C
- **40.** Two light springs of force constants k_1 and k_2 and a block of mass m are in one line AB on a smooth horizontal table, such that one end of each spring is fixed to rigid support and other end is attached to block of mass m kg as shown in figure. The frequency of vibration is:

(a)
$$n = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$$
 (b) $n = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{m}}$

(c)
$$n = \frac{1}{2\pi} \sqrt{\frac{k_1 - k_2}{m}}$$
 (d) none of these

- 41. Pressure inside two soap bubbles are 1.01 and 1.02 atm. Ratio between their volumes is:
 - (a) 102:101
- (b) $(102)^3 : (103)^3$
- (c) 8:1
- 42. Two dielectrics of dielectric constants K_1 and K₂ are filled in gap of parallel plate capacitor as shown in figure

The capacitance of capacitor will be:

- (a) $\frac{\varepsilon_0 A (K_1 + K_2)}{2d}$ (b) $\frac{\varepsilon_0 A}{2d} \left(\frac{K_1 + K_2}{K_1 K_2} \right)$
- (c) $\frac{\varepsilon_0}{d} \left(\frac{K_1 K_2}{K_1 + K_2} \right)$ (d) $\frac{\varepsilon_0 A}{d} \left(\frac{K_1 + K_2}{K_1 K_2} \right)$
- 43. For a series LCR circuit, the phase difference between current and voltage at the condition of resonance will be:
- (b) $\frac{\pi}{4}$
- (d) nothing can be said
- 44. A metallic rod of length l is placed normal to the magnetic field B and revolved in a circular path about one of the ends with angular

- the ends will be : 6 Jbig Dea
- (a) $\frac{1}{2}B^2l\omega$
- (b) $\frac{1}{2}B\omega l^2$
- (c) $\frac{1}{9}B\omega l^3$
- (d) $B\omega l^2$
- 45. A magnetic needle suspended in a vertical plane at 30° from the magnetic meridian makes an angle 45° with the horizontal. What will be the true angle of dip?
 - (a) $\tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$ (b) $\tan^{-1} (\sqrt{3})$
- **46.** A force F is given by $F = at + bt^2$, where t is time. What are the dimensions of a and b respectively?
 - (a) $[MLT^{-1}]$ and $[MLT^{-4}]$
 - (b) [MLT-3] and [MLT-4]
 - (c) $[MLT^{-4}]$ and $[MLT^{2}]$
 - (d) $[ML^2T^3]$ and $[M^{-1}L^2T]$
- 47. In a triode valve, the plate resistance is 10000Ω and the anode load resistance is 30000 Ω . If the amplification factor is 36, then the voltage gain is:
 - (a) 9
- (b) 27
- (c) 36
- (d) 108
- **48.** g_e and g_p denote the acceleration due to gravity on the surface of the earth and another planet whose mass and radius are twice to that of the earth, then:
 - (a) $g_p = \frac{g_e}{2}$ (b) $g_p = g_e$

 - (c) $g_p = 2g_e$ (d) $g_p = \frac{g_e}{\sqrt{2}}$
- 49. Of the following which relation is true:
 - (a) $\beta > \alpha$
- (b) $\alpha > \beta$
- (c) $\alpha\beta = 1$
- (d) $\alpha = \beta$
- 50. A soap bubble in vacuum has a radius 3 cm and another soap bubble in vacuum has radius 4 cm. If two bubbles coalesce under isothermal condition, then the radius of the new bubble will be:
 - (a) 7 cm
- (b) 5 cm
- (c) 4.5 cm
- (d) 2.3 cm

Answer – Key

		_Download from www. <mark>JbigDeaL.com </mark>																		
1.	С	2.	b	3.	d	4.	а	5.	d	6.	b	7.	b	8.	d	9.	a	10.	b	П
11.	d	12.	b	13.	С	14.	d	15.	а	16.	а	17.	С	18.	С	19.	b	20.	b	
21.	С	22.	С	23.	b	24.	С	25.	С	26.	а	27.	d	28.	а	29.	а	30.	а	
31.	а	32.	d	33.	b	34.	b	35.	С	36.	d	37.	С	38.	b	39.	С	40.	а	
41.	С	42.	а	43.	С	44.	b	45.	а	46.	b	47.	b	48.	а	49.	а	50.	b	