1. Following two wave trains are approaching each other. http://isbigdeal.blogspot.com/ $y_1 = a \sin 200 \pi t$ $y_2 = a \sin 208 \pi t$ The number of beats heard per second is :				
A. 8	B. 4	C. 1	D. 0	
2. One of the geo-static	onary satellites of India is	s vertically above		
A. New Delhi	B. Mumbai	C. Allahabad	D. None of these	
3. Light of wavelength equal to	2400 x 10 ⁻¹⁰ m in air wil	l become light of wavele	ength in glass ($\mu = 1.5$)	
1	B. 7200 x 10 ⁻¹⁰ m	C. 1080 x 10 ⁻¹⁰ m	D. none of these	
	ry to primary turns is 4:5 all losses) to power input		at will be the ratio of	
A. 4:9	B. 9:4	C. 5:4	D. 1:1	
5. Lenz's law applies toA. electrostaticsB. lensesC. electro-magnetic inductionD. cinema slides				
6. If a proton and anti-preleased ?	proton come close to each	h other and annihilate, ho	ow much energy will be	
A. 1.5 x 10 ⁻¹⁰ J	B. 3 x 10 ⁻¹⁰ J	C. 4.5 x 10 ⁻¹⁰ J	D. none of these	
7. If <i>Sn</i> is doped with <i>A</i> ?	s, what will be the result			
A. <i>n</i> -type B. <i>p</i> -type semi- conductor conductor	C. intrinsic semi- conductor D. none of these			
8. A charge is placed at the centre of a cube, what is the electric flux passing through one of its faces?				
A. (1/6) x (q/ϵ_0)	B. q/ϵ_0	C. $6q/\varepsilon_0$	D. None of these	
9. What is the degree o	f freedom in case of a me	ono atomic gas ?		
A. 1	B. 3	C. 5	D. None of these	
10. The ratio of secondary to primary turns is 4:5. If power input is <i>P</i> , what will be the ratio of power output (neglect all losses) to power input ?				

11. Speed of recession of galaxy is proportional to its distance

A. directly	B. inversely	C. exponentially://isbi	gD=none of these.com/		
12. If a substance goesA. Paramagnetic	in a magnetic field and i B. Ferromagnetic	is pushed out of it, what i C. Diamagnetic	is it ? D. Antiferromagnetic		
13. Which is not a scal A. Work	ar quantity? B. Power	C. Torque	D. Gravitational Constant		
14. Minimum energy r A13.6 eV	equired to excite an elect B. 13.6 eV	tron in a Hydrogen atom C. 10.2 eV	in ground state is : D. 3.4 eV		
15. If Gravitational Co satellite orbiting aroun	0	me, what will remain und	changed in case of a		
A. Time period	B. Orbiting radius	C. Tangential velocity	D. Angular velocity		
16. If a transparent medium of refractive index $\mu = 1.5$ and thickness $t = 2.5 \times 10^{-5}$ m is inserted in front of one of the slits of Young's Double Slit experiment, how much will be the shift in the interference pattern ? The distance between the slits is 5.0×10^{-3} cm and that between slits and screen is 100 cm.					
A. 5 cm	B. 2.5 cm	C. 0.25 cm	D. 0.1 cm		
17. How does light pro A. Total internal reflection	ppagate in optical fibres? B. Refraction	C. Reflection	D. None of these		
18. Dispersion of light A. wavelength	B. intensity of light	C. density of medium	D. none of these		
19. Which of the follow a stationary body?A. No force is acting o	wing conclusions is corre n the body	ect regarding			
B. Vector sum of forces acing on the body is zeroC. The body is in vacuumD. The forces acting on the body do not constitute a couple					
20. Energy released in A. Fission	stars is due to B. Fusion	C. Combustion	D. Chemical reaction		
21. 13 days is the half-life period of a sample. After how many days, the sample will become					
1/16th of the original s A. 52	B. 3.8	C. 3	D. none of these		
22. Absolute zero is the temperature at which					

		B. all gases become liquideal.blogspot.com/ D. everything solidifies			
23. Motion of liquid in a tube is described by					
A. Bernaulli's Theorem	B. Poiseuille Equation	C. Stoke's Law	D. Archimedes' Principle		
24. Molecular motion s A. Temperature	hows itself as B. Internal Energy	C. Friction	D. Viscosity		
25. Which is this gate ?					
A. AND C. OR	B. NAND D. NOR				
26. Energy bands in sol	ids are a consequence of				
A. Ohm's Law C. Bohr's Theory	-	B. Pauli's Exclusion Principle D. Heissenberg's Uncertainty Principle			
27. A boy of mass M stands on the floor of an elevator moving downwards with an acceleration a which is less than g. The force exerted by the boy on the floor of the elevator is					
A. Mg x Ma	B. g + a	C. Mg – Ma	D. Mg + Ma		
-	n ₁ exerts a force on anoth 1 (in magnitude) of A is	her body B of mass m ₂ . If	f the acceleration of B be		
A. m_2/m_1 (a ₂)	B. $m_1m_2 a_2$	C. m_1/m_2 (a ₂)	D. $(m_1 + m_2) a_2$		
29. What does not chan A. Wavelength	ge when sound enters fro B. Speed	om one medium to anoth C. Frequency	er ? D. none of these		
30. Resolving power of	a microscope depends u	pon			
30. Resolving power of a microscope depends uA. wavelength of light used, directlyC. frequency of light used		B. wavelength of light used, inversely D. focal length of objective			
31. An astronaut of weight Mg is in a rocket accelerating upward with an acceleration of 4g. The apparent weight of the astronaut will be					
A. 5Kg	B. 4Kg	C. Mg	D. zero		
	32. One proton beam enters a magnetic field of 10^{-4} m/s normally, sp. charge = 10^{11} C/kg, velocity = 10^{9} m/s. What is the radius of the circle describe by it ?				
A. 0.1 m	B. 100 m	C. 10 m	D. none of these		
33. If a black body radiates 20 calories per second at 227°C, it will radiate at 727°C					

A. 10 calories per second	B. 80 calories per second	C. 320 calories per sbigdeal.blogspot.com/ D. none of these			
34. If a carnot engine is working with source temperature equal to 227°C and its sink temperature is at 27°C, its efficiency will be					
A. 20%	B. 10%	C. 67%	D. 50%		
35. If the frequency of energy is	an oscillating particle is	<i>n</i> , then the frequency of	oscillation of its potential		
A. n	B. 2n	C. n/2	D. 4n		
A. X-rays	lates at a frequency of 1	B. Micro-waves			
C. Infra-red rays		D. None of these			
37. Earth's atmosphere					
A. Ultra-violet rays	B. Infra-red rays	C. X-rays	D. Micro-waves		
38. Cathode rays consi	st of				
A. Photons	B. Electrons	C. Protons	D. α -particles		
39. A body of mass m_1 is moving with a velocity V. It collides with another stationary body ofmass m_2 . They get embedded. At the point of collision, the velocity of the systemA. increasesB. decreases but does not become zeroC. remains sameD. becomes zero					
	ving with velocity V in specomes stationary. What				
A. 4V	B. V	C. 4V/3	D. 2V/3		
41. A thief steals a box of weight W & jumps from the third floor of a building. During jump, he experiences a weight of A. W B. 3W C. 1.5W D. zero					
12 Two cleatron beam	a are moving perallel in	space but in opposite dir	ractions: than		
42. Two electron beams are moving parallel in space but in opposite directions; thenA. they will attract each otherC. no interaction will take placeD. none of these					
43. Two wires with resistances R and 3R are connected in parallel, the ratio of heat generated in 2R and R is					
A. 1 : 3	B. 2 : 1	C. 1 : 4	D. 4 : 1		
44 A wire is drawn such that its radius changes from r to $2r$ the new resistance is					

44. A wire is drawn such that its radius changes from r to 2r, the new resistance is

A. 2 times	B. 4 times	C. 8 times http://isbi	gD=1/16ltimesot.com/		
45. In solids, inter-atomic forces areA. totally repulsiveC. combination of (a) and (b)		B. totally attractive D. none of these			
46. When horse starts running all of a sudden, the rider on the horse back falls backward becauseA. he is taken abackB. he is afraidC. due to inertia of rest, the upper part of his body remains at restD. due to inertia of motion, the lower part of his body comes in motion					
the string just does not					
A. $\sqrt{(Rg)}$	B. $\sqrt{(5Rg)}$	C. $(R/g)^{3/2}$	D. $\sqrt{(2Rg)}$		
48. If a person standingA. increaseC. remain same	g on a rotating disc stretc	hes out his hands, the sp B. decrease D. none of these	eed will:		
49. EMF is most closel A. mechanical force	ly related to B. potential difference	C. electric field	D. magnetic field		
50. Planetary system in the solar system describesA. conservation of energyB. conservation of linear momentumC. conservation of angular momentumD. none of these					
51. Lenz's law is based A. energy	upon B. momentum	C. angular momentum	D. inertia		
52. Faraday's second la	nw states that mass depos	sited on the electrode is d	lirectly proportional to		
A. atomic mass	B. atomic mass x velocity	C. atomic mass/valency	y D. valency		
53. Unit of power is A. kilowatt hour	B. kilowatt per hour	C. kilowatt	D. erg		
54. Power can be expre A. F.v	essed as B. 1/2 (Fv ²)	C. F.t	D. F x v		
55. Units of coefficient A. Nms ⁻¹	t of viscosity are B. Nm ² s ⁻¹	C. Nm^{-2} s	D. Nms ⁻²		

http://isbigdeal.blogspot.com/

56. Dimensions of torqu	ue are		-	0	0	
A. MLT ⁻²	$B. ML^2 T^{-2}$	$C. M^2 L^2 T^{-2}$		D. $ML^{-2}T$	2	

57. A body of weight mg is hanging on a string, which extends its length by l. The work done in extending the string is A. mg l B. *mg l*/2 C. 2 mg l D. none of these 58. The water droplets in free fall are spherical due to D. inter-molecular B. viscosity C. surface tension A. gravity attraction 59. A ball of mass 1Kg is accelerating at a rate of 1ms^{-2} . The rate of change of momentum is A. 1 Kg ms^{-2} B. 2 Kg ms^{-2} C. 3 Kg ms^{-2} D. 4 Kg ms^{-2} 60. A body orbitting around earth at a mean radius which is two times as great as the parking orbit of a satellite. The period of the body is A. 4 days B. $2\sqrt{2}$ days C. 16 days D. 64 days 61. Gamma rays are A. high energy electrons B. low energy electrons C. high energy electro-magnetic waves D. high energy positrons 62. Which is the most abundant metal in the earth's crust? A. Fe B. A1 C. Ca D. Na 63. Which one does not give a precipitate with excess of NaOH? A. $ZnSO_4$ B. FeSO₄ C. AgNO₃ D. HgCl₂ 64. What volume of CO₂ will be liberated at NTP of 12 gm of carbon is burnt in excess of oxygen? A. 11.2 litres B. 22.4 litres C. 2.24 litres D. 1.12 litres 65. Which base is found only in nucleotides of RNA? B. Uracil C. Guanine A. Adenine D. Cytosine 66. Ascorbic acid is the chemical name of A. Vitamin B₆ B. Vitamin A C. Vitamin C D. Vitamin D

67. A hydrocarbon has carbon and hydrogen. Its molecular weight is 28. Its possible formula would be

A. C_3H_6	B. C ₂ H ₄	C. CH ₄	http://isbi	gDeC4H8logspot.com/	
68. The first Noble Pri A. Faraday	ze in chemistry was give B. Cnrizzaro	n to C. Mende	leevs	D. Moseley	
69. Four different colloids have the following gold number. Which one has its most effective action?					
A. 10	B. 30	C. 20		D. 40	
70. Which is an examp A. Polythene	ble of thermosetting poly B. PVC	mer? C. Neopre	ene	D. Bakelite	
71. The number of unp A. 3	baired electrons in ferrous B. 2	s ion is C. 4		D. 5	
72. Strongest reducing A. K	agent is B. Mg	C. Al		D. Ba	
73. Which of the follow A. Ra	wing is man-made eleme B. U	nt? C. Np		D. C – 4	
74. Which of the following statements is/are correct? A. Boiling point of alkylhalide is greater than its corresponding alkane B. In water, solubility of $CH_3OH > C_2H_5OH >$ C_6H_5OH C. Aniline is a weaker base than NH_3 D. All of the above					
75. Which amine of the A. Ethylamine	e following will not ansv B. Methylamine	ver Carbyla C. Dimetl		n? D. Phenylamine	
76. Tollen's reagent ca A. (CH ₃) ₂ – CHOH	n be used to detect B. CH ₃ – CO.CH ₃	C. CH ₃ CH	H ₂ CHO	D. CH ₃ OCH ₃	
77. Glycerol on heating A. Acetone	g with Potassium bisulph B. Glyceraldehyde	ate yields C. Acrole	in	D. Propanol	
78. Salicylic acid on he A. Benzene	eating with sodalime give B. Calcium salicylate		c acid	D. Phenol	
79. Which one of the f A. Ethanol	ollowing will not give io B. Ethanal	doform test C. 2-prop		D. None of these	

80. The rusting of iron is catalysed by A. Fe **B**. **O**₂ C. Zn $D. H^+$ 81. 100 ml of a liquid A was mixed with 25 ml of a liquid B to give non-ideal solution of A-B mixture. The volume of this mixture will be A. 75 ml B. 125 ml exact D. close to 125 ml but not to exceed 125 ml C. fluctuating between 75 ml and 125 ml 82. IUPAC name of a compound having the formula $(CH_3)_3 C - CH = CH_2$ is B. 1, 1 - dimethyl - 3 - butene A. 3, 3 - dimethyl - 1 - butene C. 1,1, 1 - dimethyl - 2 - propene D. 3, 3, 3 - dimethyl - 1 - 1 propene 83. Which of the following compounds will be optically active? B. CH₃ - CH₂ - CH₂ -C. CH₃ – CHCl.COOH D. (CH₃)₃.C.Cl A. $(OH_3)_2 - CHOH$ CH₃ 84. The major components of brass are A. Zn and Sn B. Cu and Zn D. Zn and Fe C. Fe and Ni 85. Lunar castic is A. Silver Chloride B. Silver Nitrate C. Sodium Hydroxide D. Potassium Nitrate 86. When hot iron is exposed in hot water vapour, the compound formed is A. FeO B. Fe_2O_4 C. Fe_3O_4 D. Fe_2 (OH)₂ 87. Which of the following halide is not oxidised by MnO_2 ? A.F B. Cl⁻ C. Br⁻ D. I⁻ 88. The outermost electronic configuration of the most electronegative element is B. ns^2np^4 A. $ns^2 np^3$ C. ns^2np^5 D. ns^2np^6 89. Shape of CO_2 is A. tetrahedral B. trigonal C. bent D. linear 90. The catalyst used in the manufacture of H₂SO₄ by contact process is B. Cr_2O_3 C. V₂O₅ D. MnO₂ A. Al_2O_3 91. The composition of the common glass is D. A. Na₂O.CaO.6SiO₂ B. $Na_2O.Al_2O_3.2SiO_2$ C. CaO.Al_2O_3.2SiO_2 Na₂O.CaO.Al₂O₃.6SiO₂

http://isbigdeal.blogspot.com/

92. In a borax lead test A. Chromium	, the brown colour is due B.Cobalt	to http://isbi C. Manganese	gdeal.blogspot.com/ D. Iron	
93. Which of the follow	ving is not a fertiliser?			
A. Urea	B. Superphosphate of lime	C. Benzene Hexachloride	D. Potassium	
94. Which one of the for Table?	ollowing belongs to repre	esentative group of elem	ents in the Periodic	
A. Lanthanum	B. Argon	C. Chromium	D. Aluminium	
95. Which one of the fo	ollowing is not an isotop	e of Hvdrogen?		
A. Tritium	B. Deuterium	C. Ortho-hydrogen	D. None of the above	
96. In the reaction $I_2 + 2S_2O_3^{2^-} = 2I^- + S_4O_6^{2^-}$, equivalent weight of iodine will be equal to A. its molecular weight B. 1/2 of its molecular weight C. 1/4 the molecular weight D. twice the molecular weight				
97. Which of the following is the most powerful oxidising agent? A. F_2 B. Cl_2 C. Br_2 D. I_2				
98. From the following strongest acid?	values of dissociating c	onstants of four acids, w	hich value represents the	
-	B. 0.02 x 10 ⁻¹	C. 3 x 10 ⁻³	D. 2.0 x 10 ⁴	
99. In which of the foll A. $K = 10^3$	owing cases, does the re B. K = 10^{-2}	action go the farthest for C. K = 10	completion? D. K = 1	
A. $\mathbf{K} = 10$	D . K = 10	C. $K = 10$	$\mathbf{D}, \mathbf{K} = \mathbf{I}$	
100. The reaction which A. $Fe_2O_3 + 6HCl \rightarrow 2F$ C. $SnCl_4 + Hg_2Cl_2 \rightarrow S$		d direction is B. $NH_3 + H_2O + NaCl$ D. $2CuI + I_2 + 4K^+ \rightarrow$		
101. The substance cap A. malleable	bable of being drawn into B. tensile	fine wire is called C. ductile	D. mild	
102. The idea that most of the mass of an atom is concentrated in a very small core, i.e., nucleus				
is given by A. Amedo Avogadro	B. Rutherford	C. Bohr	D. Henery Mosley	
103. Which of the follo A. $N_2H_5^+$	owing does contain a co- B. BaCl ₂	ordinate covalent bond? C. HCl	D. H ₂ O	

104. Which of the follo A. CCl ₄	wing contains both cova B. CaCl ₂		gdeal.blogspot.com/ D.H ₂ O		
	he periodic law and the p he maximum electronega B. Nitrogen	periodic table, suggest whative character? C. Fluorine	hich of the following D. Astatine		
106. The electronic corr A. (2, 8) 3s ² 3p ⁶ 3d ¹⁰ 4s ² C. (2, 8) 3s ² 3p ⁶ 4s ² 3d ⁹ 5			B. $(2, 8) 3s^2 3p^6 3d^{10} 4s^2 5s^6 4p^5$		
107. The pH of 0.1 M s the acid?	solution of a weak acid is	s 3. What is the value of	ionisation constant for		
A. 0.1	B. 10 ⁻³	C. 10 ⁻⁵	D. 10 ⁻⁷		
108. Pure Aniline is a A. brown coloured liquid	B. colourless liquid	C. brown coloured solid	D. colourless solid		
109. Sulphide ores are A. roasting	generally concentrated b B. froth floatation	y C. reducing by carbon	D. tempering		
110. One mole of CO_2 containsA. $6.02 \ge 10^{23}$ atoms of CB. $6.02 \ge 10^{23}$ atoms of OC. $18.1 \ge 10^{23}$ molecules of CO_2 D. 3 gm atom of CO_2					
111. The Avogadro Nu	mber or a mole represen				
A. 6.02×10^{23} ions	B. 6.02 x 10 ²³ atoms	C. 6.02×10^{23} molecules	D. 6.02×10^{23} entities		
112. What is the weigh A. $6.0 \ge 10^{-23}$ gm	t of one molecule of a m B. 6.02×10^{23} gm	onoatomic element X wl C. 36 x 10 ²³ gm	nose atomic weight is 36? D. 36 x 10 ⁻²³ gm		
113. When α -particles are set through a thin metal foil, most of them go straight through the foil					
because A. α -particles are much heavier than electrons C. α -particles move with high velocity B. α -particles are positively charged D. α -particles move with low velocity					
114. The reaction, which proceeds in the forward direction, isA. $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$ B. $NH_3 + H_2O + NaCl \rightarrow NH_4Cl + NaOH$ C. $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$ D. $2CuI + I_2 + 4K \rightarrow 2Cu^+ + 4KI$					

http://isbigdeal.blogspot.com/ 115. The first order constant for the decomposition of N_2O_5 is 6.2 x 10 ⁻⁴ sec ⁻¹ . The half-life period for this decomposition in second is				
A. 1117.7	B. 111.7	C. 223.4	D. 160.9	
	mount of zinc is treated s lumes of H ₂ evolved is	separately with excess of	H_2SO_4 and excess of	
A. 1 : 1	B. 1 : 2	C. 2 : 1	D. 9 : 4	
117. Calcium does not A. oxygen	t combine directly with B. nitrogen	C. hydrogen	D. carbon	
118. Carbon differs fromA. availability of d-orC. its tendency to cate	•	• •	o-ordination number four form multiple bonds	
	h cold dil. NaOH to give B. NaI + NaIO + O ₂	C. NaI + NaIO + H ₂ O	D. NaI + NaIO ₃ + H ₂ O	
120. The number of is A. 2	omers for the atomic con B. 3	npound of the formula C C. 4	7H ₈ O is D. 5	
 121. Which of the foll A. A column in the simplex table that contains all of the variables in the solution is called pivot or key column. B. A basic solution which is also in the feasible region is called a basic feasible solution. C. A surplus variable is a variable subtracted from the left hand side of a greater than or equal to constraint to convert it into an equality. D. A slack variable is variable added to the 	ed is e	r programming problem	?	

left hand side of a less than or equal to constraint to convert it into an equality.

A. 120

A. c = bd

A. $\sqrt{3} + i$

Inequality

A.

122. The equation of the circle whose diameter lies on 2x + 3y = 3 and 16x - y = 4 and which passes through (4, 6) is A. $x^2 + y^2 = 40$ B. $5(x^2 + y^2) - 4x - 8y = 200$ C. $x^2 + y^2 - 4x - 8y = 200$ D. $5(x^2 + y^2) - 3x - 8y = 200$ 123. Let n(A) = 4 and n(B) = 5. The number of all possible injections from A to B is B. 9 C. 24 D. none 124. If $aN = \{ax : x \in N\}$ and $bN \cap cN = dN$, where $b, c \in N$ are relatively prime, then B. b = cdC. d = bcD. none of the above 125. A square root of 3 + 4i is B. 2 - i C. 2 + iD. none of the above 126. Which of the following is not applicable for a complex number? B. Division C. D. Subtraction Addition D. 127. | maximum amp (z) - minimum amp (z) | is equal to A. $\sin^{-1}(3/5) - \cos^{-1}(3/5)$ B. $\pi/2 + \cos^{-1}(3/5)$

http://isbigdeal.blogspot.com/

D. $\cos^{-1}(3/5)$ C. π - 2 cos ⁻¹ (3/5) 128. If e, e' be the eccentricities of two conics S and S' and if $e^2 + e'^2 = 3$, then both S and S' can

be A. hyperbolas C. parabolas D. none of the above B. ellipses

129. A stick of length 'I' rests against the floor and a wall of a room. If the stick begins to slide on the floor, then the locus of its middle point is

```
A. an ellipse
                         B. a parabola
                                                   C. a circle
                                                                             D. a straight line
```

130. The eccentricity of the ellipse which meets the straight line x/y + y/2 = 1 on the axis of x and the straight line x/3 - y/5 = 1 on the axis of y and whose axes lie along the axes of coordinates is

C. √6/7 A. 2√6/7 B. $3\sqrt{2}/7$ D. none of the above

131. A and B are positive acute angles satisfying the equations $3\cos^2 A + 2\cos^2 B = 4$ and $3\sin^2 B = 4$ A/sin B = $2 \cos B/\cos A$, then A + 2B is equal to

A. $\pi/3$ B. $\pi/2$ C. $\pi/6$ D. $\pi/4$

132. At a point 15 metres away from the base of a 15 metres high house, the angle of elevation of					
the top is A. 90°	B. 60°	C. 30°	D. 45°		
133. If $\tan(\pi \cos \theta) = 0$ A. $1/\sqrt{2}$	cot(π sin θ), $0 < \theta < 3\pi/4$ B. 1/2	, then $\sin(\theta + \pi/4)$ equals C. $1/(2\sqrt{2})$	s D. √2		
134. In a triangle ABC (sin ∠ BAD)/(sin ∠ C		and D divides BC international divides BC international divides BC international divides and the second divides an	ally in the ratio1 : 3. Then		
A. √2/3	B. $1/\sqrt{3}$	C. 1/√6	D. 1/3		
135. The straight line $5x + 4y = 0$ passes through the point of intersection of the linesA. $x + y - 2 = 0$, $3x + 4y - 7 = 0$ B. $x - y = 0$, $x + y = 0$ C. $x + 2y - 10 = 0$, $2x + y + 5 = 0$ D. none of the above					
136. The number of co A. 4	ommon tangents of the ci B. 1	rcles $x^2 + y^2 - 2x - 1 = 0$ C. 3	and $x^2 + y^2 - 2y - 7 = 0$ is D. 2		
137. If the product of t A2	the roots of the equation B1	$\alpha x^{2} + 6x + \alpha^{2} + 1 = 0$ is C. 2	-2, then α equals D. 1		
A. $a_1/a_2 = b_1/b_2 = c_1/c_2$	138. If the roots of $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ are same, then A. $a_1/a_2 = b_1/b_2 = c_1/c_2$ B. $a_1 = b_1 = c_1$, $a_2 = b_2 = c_2$ C. $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$ D. $c_1 = c_2$				
139. The roots of the e A. two real and two in C. all real	equation $(3 - x)^4 + (2 - x)^4$ naginary	$a^{4} = (5 - 2x)^{4}$ are B. all imaginary D. none of the above			
140. The value $\sum_{x=1}^{10}$ ($-1)^n$ is				
A. 10	B. 0	C. 1	D1		
141. If the 10th term o A. 9/4	f a G.P. is 9 and 4th term B. 4/9	n is 4, then its 7 th term is C. 6	s D. 36		
142. 1 - 1/2 + 1/3 - 1/4 A. log 2	$+$ to ∞ equals B. e	C. e ⁻¹	D. none of the above		
143. 9/1! + 19/2! + 35/ A. 16e -5	/3! + 57/4! + 85/5! + B. 7e - 3	. = C. 12e - 5	D. none of the above		

http://isbigdeal.blogspot.com/

144. How many different arrangements can be made out of the letters in the expansion $A^2B^3C^4$, when written in full?

A. 9!/(2! + 3! + 4!) B. 9!/(2! 3! 4!) C. 2! + 3! + 4! (2! 3!) D. 2! 3! - 4!4!) D. 2! 3! - 4!

145. The number of straight lines that can be drawn out of 10 points of which 7 are collinear isA. 23B. 21C. 25D. 24

146. 1/n! + 1/[2! (n - 2)!] + 1/[4! (n - 4)!] + isA. $(2^{n-1}/n!$ B. $2^n/[(n + 1)!]$ C. $2^n/n!$ D. $2^{n-2}/[(n - 1)!]$

147. The term independent of x in $(x^2 - 1/x)^9$ isD. none of the aboveA. 1B. 49C. -1

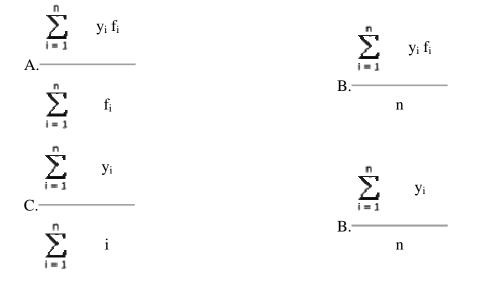
148. The 9th term of an A.P. is 499 and 499th term is 9. The term which is equal to zero isA. 501thB. 502thC. 500thD. none of the above

149. If A
$$\begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}$$
, B = $\begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix}$ then $(A + B)^{-1}$

A. is a skew symmetric matrix C. does not exist

B. $A^{-1} + B^{-1}$ D. none of the above

150. If AB = A and BA = B, then B^2 is equal to A. B B. A C. 1 D. 0


151. If the determinant $\begin{vmatrix} a & b & 2a\alpha + 3b \\ b & c & 2b\alpha + 3c \\ 2a\alpha + 3b & 2b\alpha + 3c & 0 \end{vmatrix} = 0$, then

A. a, b, c are in H.P. B. α is a root of $4ax^2 + 12bx + 9c = 0$ or a, b, c are in G.P. C. a, b, c are in G.P. only a, b, c are in A.P. http://isbigdeal.blogspot.com/152. The value of K so that (x - 1)/-3 = (y - 2)/2K = (z - 3)/2 and (x - 1)/3K = (y - 1)/1 = (z - 6)/-55 may be perpendicular is given byA. -7/10B. -10/7C. -10D. 10/7

153. The equation of the plane containing the line $\vec{r} = \vec{i} + \vec{j} + \lambda (2\vec{i} + \vec{i} + 4\vec{k}) \vec{i} \vec{s}$ A. $\vec{r} \cdot (-\vec{i} - 2\vec{j} + \vec{k}) = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$ $\vec{r} \cdot \vec{i} + 2\vec{j} - \vec{k} = 0$

D. none of the above

154. The mean of discrete observations y_1 , y_2 , y_n is given by

155. For a poisson distribution whose mean is λ , the standard deviation will be A. λ^2 B. $1/\lambda$ C. $\sqrt{\lambda}$ D. λ

156. If a, b, c, d are constants such that a and c are both negative and risthe correlation $com/coefficient$ between x and y, then the correlation coefficient between $(ax + b)$ and $(cy + d)$ is equal to						
B. c/a	C r	D. r				
157. A person draws a card from a pack of 52 playing cards, replaces it and shuffles the pack. He continues doing this until he draws a spade, the chance that he will fail in the first two draws isA. 1/16B. 9/16C. 9/64D. 1/64						
the probability of gettir B. 9/128	ng exactly 5 heads is C. 1/2	D. 63/256				
replaced each time, the	• • •					
B. 231/256	C. 25/256	D. none of the above				
² x dx is equal to						
B. $1 + (\pi/4)$	C. 1 - (π/4)	D. none of the above				
$x^{2} + (1/x^{2}) l(x \neq 0)$, then t	f(x) is equal to					
B . $x^2 - 2$	$C. x^2$	D. none of the above				
(x)]/cot2x, $x \neq \pi/4$. The erywhere is	value which should be a	assigned to f at $x = \pi/4$,				
B. 1/2	C. 2	D. none of the above				
e defined on domains D_1	and D ₂ respectively, the	en domain of $f_1(x)$ +				
B. $D_1 \cup D_2$	C. D ₁ - D ₂	D. D ₂ - D ₁				
164. The derivative of sin x^3 with respect to $\cos x^3$ is equal to						
B $\cot x^3$	C. $\cot x^3$	D. $\tan x^3$				
165. If $y = f(x)$ is an odd differentiable function defined on (∞, ∞) such that $f'(3) = -2$, then $f'(-3)$ equals						
B. 2	C2	D. 0				
166. The line $(x/a) + (y/b) = 1$ touches the curve $y = be^{-x/a}$ at the pointA. (a, ba) B. $(a, a/b)$ D. none of the above						
	d y, then the correlation B. c/a ard from a pack of 52 pl 1 he draws a spade, the of B. 9/16 the probability of gettin B. 9/128 1 00, 01, 10, 11 respective replaced each time, the is B. 231/256 f x dx is equal to B. 1 + ($\pi/4$) f^2 + ($1/x^2$)](x \neq 0), then the B. $x^2 - 2$ x)]/cot2x, x $\neq \pi/4$. The erywhere is B. 1/2 defined on domains D ₁ B. D ₁ \cup D ₂ n x ³ with respect to cos B cot x ³ differentiable function B. 2	d y, then the correlation coefficient between (ax B. c/a C r ard from a pack of 52 playing cards, replaces it a 1 he draws a spade, the chance that he will fail in B. 9/16 C. 9/64 the probability of getting exactly 5 heads is B. 9/128 C. 1/2 100, 01, 10, 11 respectively are placed in a bag. replaced each time, the probability that the sun is B. 231/256 C. 25/256 f x dx is equal to B. 1 + ($\pi/4$) C. 1 - ($\pi/4$) f^2 + ($1/x^2$)]($x \neq 0$), then f(x) is equal to B. $x^2 - 2$ C. x^2 x)]/cot2x, $x \neq \pi/4$. The value which should be a erywhere is B. 1/2 C. 2 defined on domains D ₁ and D ₂ respectively, the B. D ₁ \cup D ₂ C. D ₁ - D ₂ n x ³ with respect to cos x ³ is equal to B cot x ³ C. cot x ³ differentiable function defined on (∞, ∞) such to B. 2 C2 b) = 1 touches the curve y = be ^{-x/a} at the point				

167. The least value of 'a' for which the equation $(4/\sin x) + [1/(1:4/\sin x)] = a$ has at least one m/ solution on the interval $(0, \pi/2)$ is					
A. 4	B. 1	C. 9	D. 8		
168. The area bounded A. 32/7	by the curve $y^2 = 8x$ and B. 24/5	$1 x^2 = 8y$ is C. 72/3	D. 64/3		
169. The integrating factor of the differential equation $[(dy/dx)(x \log x)] + y = 2 \log x$ is given					
by A. log (log x)	B. e ^x	C. log x	D. x		
170. If $y = \tan^{-1}[(\sin x A. 1/2)]$	+ cos x)/(cos x - sin x)], B. 0	then dy/dx is equal to C. 1	D. none of the above		
171. The length of tang A. 81	gent from (5, 1) to the cir B. 29	cle $x^2 + y^2 + 6x - 4y - 3 = $ C. 7	= 0 is D. 21		
172. The equation of the straight line which is perpendicular to $y = x$ and passes through (3, 2)					
will be given by A. $x - y = 5$	B. $x + y = 5$	C. $x + y = 1$	D. x - y = 1		
173. If the imaginary part of $(2z + 1)/(iz + 1)$ is - 2, then the locus of the point representing z in the complex plane is					
A. a circle	B. a straight line	C. a parabola	D. none of the above		
174. The sum of 40 terms of an A.P. whose first term is 2 and common difference 4, will beA. 3200B. 1600C. 200D. 2800					
	P., then a/bc, 1/c, 2/b are B. G.P.		D. none of the above		
176. The term independent of x in $[x^2 + (1/x^2)]$ is					
A. 1	B1	C. 48	D. none of the above		
177. The equation of a A. $y = -3$	line through $(2, -3)$ paral B. y = 2	llel to y-axis is C. $x = 2$	D. x = -3		
178. The value $\int_{-2}^{2} (ax^3 + bx + c) dx$ depends of $\int_{-2}^{2} on$					
A. the value of b	B. the value of c	C. the value of a	D. the value of a and b		

179. The range of the function $f(x) = (1 + x^2)/x^2$ is equal to http://isbigdeal.blogspot.com/				
A. [0, 1]	B. [1, 0]	C. (1, ∞)	D. [2, ∞]	

180. Two vectors are said to be equal if A. their magnitudes are same

C. they meet at the same point

B. direction is same

D. they have magnitude and same sense of direction