1. Surface temperature of the sun is of the order of
A. 5000 K
B. 7000 K
C. 6000 K
D. 12000 K
2. Two bodies A \& B having masses in the ratio 1:4 have Kinetic energies in the ratio 4:1.The ratio of the linear momenta is
A. 1:4
B. 1:2
C. $1: 1$
D. 1:15
3. The function of base in transistor is
A. to stop the flow of electron
B. to stop the flow of current
C. to control the flow of current
D. to transmit current
4. Unidirectional property of $p-n$ junction diode is used in
A. rectifier
B. amplifier
C. transistor
D. oscillator
5. A ${ }^{238} \mathrm{U}$ nucleus decays by emitting an alpha-particle of speed $v \mathrm{~ms}^{-1}$. The recoil speed of the residual nucleus is (in ms^{-1})
A. $-4 v / 234$
B. $\mathrm{v} / 4$
C. $-4 \mathrm{v} / 238$
D. $4 \mathrm{v} / 234$
6. Continuous spectrum of X -rays are produced
A. when electrons move from outer to inner
B. when electrons move from inner to outer orbits orbits
C. when electrons are accelerated by moving
D. none of these towards the nucleus
7. According to Bohr's model of hydrogen atom, the radius of stationary orbits characterised by the principal quantum number is proportional to
A. n^{-1}
B. n
C. n^{-2}
D. n^{2}
8. When photons of energy 4.25 eV strike the surface of a metal A, the ejected photoelectrons have maximum kinetic energy $T_{A} \mathrm{eV}$ and De -Broglie wavelength λ_{A}. The maximum kinetic energy of the photoelectrons liberated from another metal B by photons of energy eV is $T_{B}=\left(T_{A}\right.$ $-1.5) \mathrm{eV}$. If the De-Broglie wavelength of these photoelectrons is $\lambda_{\mathrm{B}}=2 \lambda_{\mathrm{A}}$, then
A. the work function of A is 3.25 eV
B. the work function of B is 4.20 eV
C. $\mathrm{T}_{\mathrm{A}}=2.00 \mathrm{eV}$
D. $\mathrm{T}_{\mathrm{b}}=2.75 \mathrm{eV}$
9. The magnifying power of simple microscope is
A. $\propto f$
B. $\propto(1 / f)$
C. $\propto \sqrt{ } f$
D. $\propto(1 / \sqrt{ } f)$
10. Refractive index depends on
A. angle of prism
B. wavelength of the light
C. intensity of light
D. frequency of light
11. A ray is incident in glass at $31^{\circ} 42$ ' on glass-water boundary. If the angle of deviation of the ray is 4.5 degree, the angle of refraction in water will be
A. $27^{\circ} 12^{\prime}$
B. $35^{\circ} 92^{\prime}$
C. $26^{\circ} 92^{\prime}$
D. $36^{\circ} 12^{\prime}$
12. In Young's double slit experiment, the distance between the two slits is 0.1 mm , and the wavelength of light used is $4 \times 10^{-7} \mathrm{~m}$. If the width of the fringe on the screen is 4 mm , the distance between screen and slit is
A. 0.1 mm
B. 1 cm
C. 0.1 cm
D. 1 m
13. The reason of various colours in bubble soap is
A. interference
B. visible light
C. diffraction
D. none of these
14. In a pure inductor circuit, what is the angle between potential and current ?
A. 0
B. π
C. $\pi / 2$
D. 2π
15. In an LCR circuit, Impedance is minimum when
A. $R=X_{L}$
B. $\mathrm{R}=\mathrm{X}_{\mathrm{C}}$
C. $R=X_{C}+X_{L}$
D. $\mathrm{R}=\mathrm{Z}$
16. An LCR series circuit consists of $R=25 \Omega$ and the reactances of C and L are 12Ω and 24Ω respectively. The impedance of the circuit is
A. 21Ω
B.27.5 Ω
C. 13Ω
D. 5Ω
17. In a transformer there are two coils placed near one another. First has 100 turns and 1A current and the other 25 turns. Current flowing through later will be
A. 1 A
B. 4 A
C. 16 A
D. $1 / 16 \mathrm{~A}$
18. If two straight long conductors carry current in the same direction, the magnetic force on each other will be
A.
B.
repulsive attractive
C. zero
D. none of these
19. If a particle is rotating between two magnetic fields, with certain velocity, this velocity depends upon
A. magnetic field
B. angular velocity
C. torque
D. acceleration
20. Two infinitely long, thin, insulated, straight wires lie in the $x-y$ plane along the x and y axes respectively. Each wire carries a current I respectively in the positive x-direction and the positive y-direction. The magnetic field will be zero at all points on the straight line
A. $\mathrm{y}=\mathrm{x}$
B. $y=-x$
C. $\mathrm{y}=\mathrm{x}-1$
D. $y=-x+1$
21. Force acting on a charge moving in a magnetic field will not depend upon
A. its mass
B. amount of charge
C. its velocity
D. intensity of magnetic field
22. 200 W bulb works for 5 minutes, the energy consumed is
A. 70,000 J
B. $20,000 \mathrm{~J}$
C. $63,000 \mathrm{~J}$
D. $60,000 \mathrm{~J}$
23. A 20 volt battery has a capacity of 10^{6} joules. How long it can supply a current of 10A ?
A. $5 \times 10^{5} \mathrm{sec}$
B. $5 \times 10^{3} \mathrm{sec}$
C. $2 \times 10^{5} \mathrm{sec}$
D. $2 \times 10^{8} \mathrm{sec}$
24. The calories of heat developed in 200 watt heater in 7 minutes is estimated
A. 15000
B. 100
C. 1000
D. 20000
25. A ball is thrown vertically upwards in free space. Its total mechanical energy
A. remains constant throughout the motion
B. increases during ascent and decreases during descent
C. is zero at maximum height
D. is equal to kinetic energy at a point just below the maximum height
26. In the circuit shown, the current in the 20 ohms resistor, if the P.D. across $X Y$ is 50 volts is
A. 0.04 A
B. 10 A
C. 2.5 A
D. 1.8 A

27. If current through 3 ohms resistor is 1.2 amp , then potential drop through 4 ohms resistor is
A. 9.6 V
B. 2.6 V
C. 2.4 V
D. 1.2 V

28. The drift speed of electron in a conductor is of the order of
A. $10^{-3} \mathrm{~m} / \mathrm{s}$
B. $10^{2} \mathrm{~m} / \mathrm{s}$
C. $10^{-10} \mathrm{~m} / \mathrm{s}$
D. $10^{+8} \mathrm{~m} / \mathrm{s}$
29. What will happen to the capacity of a parallel plate capacitor in which a conductor plate is introduced?
A. Increase
B. Decrease
C. Remains same
D. None of these
30. If charge remains constant, what will happen to the surface potential of a wire whose diameter is doubled but length remains same?
A. Double
B. Half
C. One-third
D. Same
31. A proton is accelerated through a potential difference of 1 V . Its energy is
A. 1 eV
B. 0
C. 2 eV
D. 4 eV
32. Electric field intensity on the axis of an electric dipole when (r / a) >> 1, varies as:
A. r
B. r^{2}
C. $1 / \mathrm{r}^{2}$
D. $1 / \mathrm{r}^{3}$
33. A charge Q is divided into two parts q_{1} and q_{2}. The maximum coulomb repulsion between the two parts is obtained when the ratio q_{2} / q_{1} is
A. 1
B. $2 / 3$
C. $1 / 2$
D. $1 / 4$
34. Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength $\lambda_{\text {в }}$ corresponding to maximum spectral radiancy in the radiation differs from that of A, by $1.00 \mu \mathrm{~m}$.
If the temperature of A is 5802 K ,
A. the temperature of B
$\begin{array}{ll}\text { is } 17406 \mathrm{~K} & \text { B. } \lambda_{\mathrm{B}}=1.5 \mu \mathrm{~m}\end{array}$
C. the temperature of $B D$. the temperature of B is $11604 \mathrm{~K} \quad$ is 2901 K
35. What will be the temperature when the r.m.s. velocity is double of that at 300 K ?
A. 300 K
B. 600 K
C. 900 K
D. 1200 K
36. If Maxwell distribution is valid and if V_{p} denotes the most probable speed, V the average speed and $V_{r m s}$ the root-mean-square velocity, then
A. $\mathrm{V}<\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{rms}}$
B. $\mathrm{V}<\mathrm{V}_{\mathrm{rms}}<\mathrm{V}_{\mathrm{p}}$
C. $\mathrm{V}_{\mathrm{p}}<\mathrm{V}<\mathrm{V}_{\mathrm{rms}}$
D. $\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{rms}}<\mathrm{V}$
37. A cubical box with porous walls containing an equal number of O_{2} and H_{2} molecules is placed in a large evacuated chamber. The entire system is maintained at a constant temperature T. The ratio of the number of O_{2} molecules to the number of H_{2} molecules found in the chamber outside the box after a short interval, is
A. $1 /(2 \sqrt{ } 2)$
B. 1
C. $1 / \sqrt{ } 2$
D. $\sqrt{ } 2$
38. Which of the following is not thermodynamical function?
A. Work done
B. Gibb's energy
C. Internal energy
D. Enthalpy
39. The absolute zero temperature in Fahrenheit scale is
A. $-273^{\circ} \mathrm{F}$
B. $-32^{\circ} \mathrm{F}$
C. $-460^{\circ} \mathrm{F}$
D. $-132^{\circ} \mathrm{F}$
40. $\lambda_{1}=100 \mathrm{~cm}, \lambda_{2}=90 \mathrm{~cm}$ and velocity $=396 \mathrm{~m} / \mathrm{s}$. The number of beats are
A. 41
B. 42
C. 34
D. 44
41. One musical instrument has frequency 90 Hz ; velocity of source $=1 / 10$ th of the velocity of light. What is the frequency of sound as heard by the observer?
A. 90 Hz
B. $10^{-4} \mathrm{~Hz}$
C. 900 Hz
D. $10^{4} \mathrm{~Hz}$
42. Which phenomenon explains the shifting of galaxies from each other?
A. Red shift
B. White dwarf
C. Black hole
D. Neutron star
43. Sound waves in air are always longitudinal because
A. the density of air is very small
B. this is an inherent characteristics of sound waves in all media
C. air does not have a modulus of rigidity
D. air is a mixture of several gases
44. Equation of a progressive wave is given by
$y=\sin \pi\{(t / 5-x / 9)+\pi / 6\}$
Then which of the following is correct?
A. $V=5 \mathrm{~cm} / \mathrm{sec}$
B. $\lambda=18 \mathrm{~cm}$
C. $\mathrm{A}=0.04 \mathrm{~cm}$
D. $f=50 \mathrm{~Hz}$
45. Energy of a particle executing SHM depends upon:
A. amplitude only
B. amplitude and
frequency
C. velocity only
D. frequency only
46. Two particles are executing SHMs. The equations of their motion are
$y_{1}=10 \sin (\omega t+\pi T / 4) ; y 2=25 \sin (\omega t+\sqrt{ } 3 \pi T / 4)$.
What is the ratio of their amplitudes?
A. $1: 1$
B. $2: 5$
C. $1: 2$
D. none of these

47: A spherical ball of radius $1 \times 10^{-4} \mathrm{~m}$ and of density $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ falls freely under gravity through a distance h in a tank of water before attaining the terminal velocity. What will be the value of h ? $\left(\eta\right.$ for water $\left.=9.8 \times 10^{-6} \mathrm{sec} / \mathrm{m}^{2}\right)$
A. 18.4 m
B. 20.4 m
C. 22.4 m
D. 24.4 m
48. Surface tension of a liquid near the critical point
A. is maximum
B. is minimum but non-vanishing
C. vanishes
D. is maximum but not greater than unity in magnitude
49. The escape velocity of a projectile does not depend upon
A. mass of B. radius of ball earth C. g
D. none of these
50. The momentum of the body having kinetic energy E is doubled. The new Kinetic energy is
A. E
B. 4E
C. 16 E
D. 32E
51. For a planet moving around the sun in an elipitical orbit of semi-measure and semi-minor axis a and b respectively and time period T, is
A. the average torque acting on the planet about the sun is non zero
B. the angular momentum of the planet about the sun is constant
C.the arial velocity is $\pi a b / T$
D.the planet moves with constant speed around the sun
52. Kepler's law states that square of the time period of any planet about the sun is directly proportional to
A. R
B. $1 / \mathrm{R}$
C. R^{3}
D. $1 / R^{3}$
53. Moment of inertia of a body depends upon .
A. Axis of Rotation
B. Torque
C. Angular Momentum
D. Angular Velocity
54. A solid sphere, disc and solid cylinder all of same mass and made up of same material are allowed to roll down (from rest) on an inclined plane, then
A. solid sphere reaches B. solid sphere reaches the bottom first the bottom late
C. disc will reach the D. all of them reach the bottom first
bottom at the same time
55. A mass m with velocity u strikes a wall normally and returns with the same speed. What is the change in momentum of the body when it returns:
A. $-m u$
B. $m u$
C. $2 m u$
D. 0
56. A man can throw a ball to a maximum height of h. He can throw the same ball to a maximum horizontal distance of:
A. h
B. $2 h$
C. h^{2}
D. $2 h^{2}$
57. The velocity with which a projectile must be fired to escape from the earth does depend upon
A. mass of earth
B. mass of projectile
C. radius of earth
D. none of these
58. Which of the following quantities can be written in SI units in $\mathrm{kgm}^{2} \mathrm{~A}^{-2} \mathrm{~s}^{-3}$?
A. Resistance
B. Inductance
C. Capacitance
D. Magnetic flux
59. Unit of impulse is
A. $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
B. $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$
C. $\mathrm{ML}^{-1} \mathrm{~T}$
D. MLT^{-1}
60. $\mathrm{N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$ is unit of
A. torque
B. gravitational
constant
C. permittivity
D. surface tension
61. A solution was prepared by mixing 50 ml of 0.2 M HCl and 50 ml of 0.10 M NaOH . The pH of the solution is
A. 7.0
B. 2.0
C. 3.0
D. 1.2
62. Which dye among the following is a vat dye?
A. Martins yellow
B. Alizarin
C. Indigo
D. Malachite green
63. The path of a beam of light through smoke is visible because
A. carbon dioxide in the smoke scatters light
B. carbon dioxide in the smoke absorbs light
C. colloidal particles in the smoke absorb light
D. colloidal particles in the smoke scatter light
64. Which of the following statements is incorrect?
A. Colloidal particles pass through the pores of filter paper
B. Colloidal particles have large surface area
C. Colloidal particles are charged particles
D. Colloidal particles are neutral
65. The plastic household crockery is prepared using
A. malamine and tetrafluoroethene
B. malonic acid and hexamethyleneamine
C. malamine and vinyl acetate
D. malamine and formaldehyde
66. An isotope is formed when successive active emissions of an element are
A. α. β, α
B. $\beta . \beta, \alpha$
С. $\beta . \beta, \beta$
D. $\alpha . \alpha, \beta$
67. It is not true that
A. the wavelength
associated with an
electron is longer than
that of proton, if they
have the same speed
B. violet radiations
have longer wavelength
than red radiations
C. the energy of light
with $\lambda=600 \mathrm{Nm}$ is
lower than that with $\lambda=$
500 Nm
D. spectrum of an atom
is known as line
spectrum
68. It is true that
A. some complex metal oxides behave as super-conductors
B. zinc oxide can act as a super-conductor
C. an impurity of tetravalent germanium in trivalent gallium creates electron deficient
D. a Frenkel defect is formed when an ion is displaced from its lattice site to an interstitial site
69. Allyl cyanide has
A. 9σ and 4π bonds
B. $9 \sigma, 3 \pi$ and 2 non-bonding electrons
C. $8 \sigma, 3 \pi$ and 4 non-bonding electrons
D. 8σ and 5π bonds
70. The chemical change in the reaction
$\mathrm{CH}_{2} \mathrm{COCH}_{3}+\mathrm{HCHO} \rightarrow \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{2}$ is an
example of
A.
oxidation
B.
C. aldol
D. none of
reduction
disproportionation addition the above
71. A fairly specific test for phenol is
A. coupling with diazonium salt
B. decolourisation of bromine water
C. dissolution in aqueous alkali
D. decolourisation of KMnO_{4}
72. The elevation in the boiling point would be highest for
A. 0.08 M barium chloride
B. 0.10 M glucose
C. 0.15 M potassium chloride
D. 0.06 M calcium nitrate
73. A 0.2 molal aqueous solution of weak acid (HX) is 20% ionised. The freezing point of this solution is (Given $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} \mathrm{m}^{-1}$ for water)
A. $-0.45^{\circ} \mathrm{C}$
B. $-0.53^{\circ} \mathrm{C}$
C. $-0.90^{\circ} \mathrm{C}$
D. $-0.31^{\circ} \mathrm{C}$
74. 6.0 g of urea (molecular weight $=60$) was dissolved in 9.9 moles of water. If the vapour pressure of pure water is P_{0}, the vapour pressure of solution is
A. $0.10 \mathrm{P}_{0}$
B. $1.10 \mathrm{P}_{\mathrm{o}}$
C. $0.90 \mathrm{P}_{\mathrm{o}}$
D. $0.99 \mathrm{P}_{\mathrm{o}}$
75. A molecule with the highest bond energy is
A. bromine B. fluorine
C. chlorine D. iodine
76. A substance is found to contain 7% nitrogen. The minimum molecular weight of it is
A. 700
B. 100
C. 200
D. 70
77. Sodium nitroprusside when added to an alkaline solution of sulphide ions produces purple coloration due to the formation of
A. $\mathrm{Na}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NOS}\right]$
B. $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
C. $\mathrm{Na}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
D. $\mathrm{Na}_{4}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NOS}\right]$
78. The bond energy ($\mathrm{k} \mathrm{cal} \mathrm{mol}^{-1}$) of carbon-carbon bond in ethylene is approximately equal to
A. 59
B. 100
C. 33
D. 150
79. Which of the following molecule is planar?
A. n-hexane
B. glycerine
C. cyclohexane
D. fumaric acid
80. A mixture of butane, ethylene and dimethyl acetylene is passed through acidified permanganate solution. The gas that comes out is
A. butane
B. a mixture of butane and ethylene
C. methyl acetylene
D. a mixture of all compounds
81. White lead is
A. B. C. D.
$\mathrm{PbCO}_{3} \mathrm{~Pb}(\mathrm{OH})_{2} \cdot 2 \mathrm{PbCO}_{3} \mathrm{~Pb}(\mathrm{OH})_{2} \cdot \mathrm{~Pb}\left(\mathrm{CH}_{3} \mathrm{COOO}\right)_{2} \mathrm{~Pb}(\mathrm{OH})_{2}$
82. When tin is boiled with concentrated nitric acid, the compound formed is
A. stannous nitrate
B. stannic nitrate
C. m-stannic acid
D. stannic oxide
83. All the metals form oxides of the type MO except
A. copper
B. barium
C. silver
D. lead
84. The element exhibiting most stable +2 oxidation state from among the following is
A. Sn
B. Fe
C. Pb
D. Ag
85. German silver is
A. silver made in
B. an alloy of silver
C. an alloy of copper
D. a silvery white paint
Germany
B. heating alumina with carbon
A. heating red bauxite
D. heating alumina in H_{2} atmosphere
C. electrolysing a mixture of alumina and cryolite
87. Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ cannot be used to prepare HBr from NaBr because it
A. reduces HBr
B. reacts slowly with
NaBr
C. oxidises HBr
D. disproportionates
88. N_{2} is diamagnetic and O_{2} is paramagnetic.

Both the molecules have even number of electrons ($\mathrm{N}_{2}: 14 ; \mathrm{O}_{2}: 16$). It is not true that
A. the energy of the two orbitals $\pi_{\mathrm{x}} 2 \mathrm{p}_{\mathrm{x}}$ and π_{x}
$2 \mathrm{p}_{\mathrm{y}}$ in O_{2} is.the same
B. there are two unpaired electrons in O_{2}
C. the bond order in N_{2} is 3
D. the bond order in O_{2} is 3
89. Heavy water
A. contains dissolved Ca^{2+} and Mg^{+}ions
B. contains dissolved Ca^{2+} ions only
C. is made up of ${ }_{1} \mathrm{H}^{2}$ and ${ }_{8} \mathrm{O}^{16}$ atoms
D. is water with maximum density at $4^{\circ} \mathrm{C}$
90. It is not true that
A. phosphine is more stable than ammonia
B. phosphorus is less reactive than nitrogen
C. HNO_{3} is stronger acid than HPO_{3}
D. Nitrogen is more electronegative than phosphorus
91. The number of electrons that are paired in an oxygen molecule is
A. 7
B. 14
C. 8
D. 16
92. Which is the correct arrangement of boiling points of the following compounds?
A. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
93. Amongst the following, the weakest base is
A. potassium hydroxide B. sodium hydroxide
C. magnesium
hydroxide
D. calcium hydroxide
94. The dissociation of water at $25^{\circ} \mathrm{C}$ is 1.9×10^{-6} percent and the density of water is $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$. The ionisation constant of water is
A. 3.42×10^{-6}
B. 2.00×10^{-16}
C. 3.42×10^{-8}
D. 1.00×10^{-14}
95. An aqueous solution contains the following ions: $\mathrm{Hg}_{2}{ }^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}$ and Cd^{2+}. It precipitates
A. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ and PbCl_{2}
B. $\mathrm{Hg}_{2} \mathrm{C1}_{2}$ only
C. $\mathrm{PbC1}_{2}$ only
D. PbCl_{2} and HgCl_{2}
96. Which of the following salts is most acidic in water?
A. NiCl_{2}
B. BeCl_{2}
C. FeCl_{3}
D. AlCl_{3}
97. The type of hybridisation in tetrahedral complexes of metal atoms is
A. dsp^{2}
B. $d^{2} s p$
C. sp^{3}
D. sp^{2}
98. Pick out the electronic configuration of the most electropositive element.
A. $n s^{2} n p^{3}$
B. $n s^{2} n p^{0}$
C. $n s^{2} n p^{1}$
D. $n s^{2} n p^{4}$
99. The designation of the orbital with $n=3$ and $\mathrm{l}=2$ is
A. 4 d
B. 5d
C. 3d
D. 5 s
100. CsBr crystal has bcc structure. It has an edge length of $4.3 \mathrm{~A}^{0}$. The shortest inter Br -ions is
A. $3.72 \mathrm{~A}^{0}$
B. $4.3 \mathrm{~A}^{0}$
C. $1.86 \mathrm{~A}^{0}$
D. $7.44 \mathrm{~A}^{0}$
101. A mixture of equal volumes of H_{2} and Cl_{2} was exposed to ultraviolet light at constant pressure. Pick out the correct statement.
A. The volume of the gas mixture increases by a factor of 2
B. The volume of the gas mixture decreases by a factor of 2
C. The volume remains unchanged, as there is no chemical reaction
D. A chemical reaction occurs but there is no change in volume
102. Correct set of four quantum numbers for the valence electrons of rubidium ($\mathrm{z}=37$) is
A. $5,0,0,+1 / 2$
B. $5,1,0,+1 / 2$
C. $5,1,1,+1 / 2$
D. $6,0,0,+1 / 2$
103. The linear structure is assumed by
A. SnCl_{2}
B. NCO^{-}
C. SO_{2}
D. NH_{3}
104. While P reacts with caustic soda, the products are PH_{3} and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$. This is an example of
A.
B.
C.
D.
oxidation reduction oxidation neutralisation
and
reduction
105. Which of the following compounds is covalent?
A. H_{2}
B. CaO
C. KCl
D. $\mathrm{Na}_{2} \mathrm{~S}$
106. The concentration of solution remains independent of temperature in
A. molarity
B. normality
C. formality
D. molality
107. Precipitation takes place when the product of concentration of ions
A. equals their solubility product
B. exceeds their solubility product
C. less than their solubility product
D. none of the above
108. Which one of the following elements has maximum electron affinity?
A. F
B. Cl
C. Br
D. I
109. Most probable velocity, average velocity, and RMS velocity are related as
A. $1: 1.128: 1.234$
B. $1: 1.234: 1.128$
C. $1.128: 1: 1.234$
D. $1.128: 1.234: 1$
110. Which of the following compounds corresponds Vant Hoff's factor (i) to be equal to 2 for dilute solution?
A. $\mathrm{K}_{2} \mathrm{SO}_{4}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. Sugar
D. MgSO_{4}
111. Amongst the following hydroxides, the one that has the lowest value of $\mathrm{K}_{\text {sp }}$ at ordinary temperature (about. $25^{\circ} \mathrm{C}$) is
A.
B. $\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{C} . \mathrm{Ba}(\mathrm{OH})_{2} \mathrm{D}$.
$\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{Be}(\mathrm{OH})_{2}$
112. The rate of reaction between A and B increases by a factor of 100 . When the concentration of A is increased 10 folds, the order of reaction with respect to A is
A. 1
B. 2
C. 3
D. 4
113. In a reversible reaction, a catalyst
A. increases the rate of forward reaction
B. increases the rate of backward reaction
C. alters the rates of both reactions equally
D. increases the rate of forward reaction more than that of backward reaction
114. The cathodic reaction in electrolysis of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrode is
A. oxidation
B. reduction
C. both oxidation and reduction
D. neutralisation
115. The oxide that gives $\mathrm{H}_{2} \mathrm{O}_{2}$ on treatment with a dilute acid is
A. PbO_{2}
B. $\mathrm{Na}_{2} \mathrm{O}_{2}$
C. MnO_{2}
D. TiO_{2}
116. A naturally occurring substance from which a metal can be profitably extracted is called
A. mineral
B. gangue
C. ore
D. flux
117. The metallic lustre exhibited by sodium is explained by
A. diffusion of sodium ion
B. oscillation of loose electrons
C. excitation of free protons
D. existence of body centred cubic lattice
118. A pair of compounds, which cannot exist together in solution, is
A. NaHCO_{3} and NaOH
B. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$
C. NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
119. A solution of sodium metal in liquid ammonia is strongly reducing due to the presence of
A. sodium atoms
B. sodium hydride
C. sodium amide
D. solvated electron
120. If two compounds have the same crystal structure and analogous formulae, they are called
A. allotropes
B. isotopes
C. isomers
D. isobars
121. The line $y=m x+1$ is a tangent to $y^{2}=4 x$, first m equals
A. -1
B. 1
C. 2
D. 4
122. If $Q=\{x: x=1 / y$, where $y \in N\}$, then
A. $(2 / 3) \in \mathrm{Q}$
B. $2 \in \mathrm{Q}$
C. $0 \in \mathrm{Q}$
D. $1 \in \mathrm{Q}$
123. Which of the following functions is periodic?
A. $f(x)=x-[x]$, where $[x]$ denotes the largest integer less than or equal to the real number x
B. $f(x)=\sin (1 / x)$ for $x \neq 0, f(0)=0$
C. $f(x)=x \cos x$
D. none of the above
124. If $|2 x+5| \leq x+3$, then x lies in the interval
A. [5/2, 8/3]
B. $[-5 / 2,-2]$
C. $[-8 / 3,-2]$
D. $[-8 / 3,-5 / 2]$
125. The centre of a square $A B C D$ is at $z_{1}=0$. The affix of the vertex A is z. Then the affix of the centroid of the triangle $A B C$ is
A. $\left(\mathrm{z}_{1} / 3\right)[\cos (\pi / 2) \pm \mathrm{i} \sin (\pi / 2)]$
B. $\mathrm{z}_{1}[\cos (\pi / 2) \pm \mathrm{i} \sin (\pi / 2)]$
C. $\left(z_{1} / 3\right)(\cos \pi \pm i \sin \pi)$
D. $\mathrm{z}_{1}(\cos \pi \pm \mathrm{i} \sin \pi)$
126. Angles made with the x-axis by two lines drawn through the point $(1,2)$ and cutting the line $x+y=4$ at a distance $(1 / 3) \sqrt{6}$ from the point $(1,2)$ are
A. $\pi / 12$ and B. $\pi / 8$ and
C. $\pi / 6$ and
D. none of
$5 \pi / 12 \quad 3 \pi / 8 \quad \pi / 3 \quad$ the above
127. A circle is a limiting case of an ellipse whose eccentricity tends to
A. $a+b$
B. 0
C. b
D. a
128. The gradient of one of the lines $x^{2}+h x y+2 y^{2}=0$ is twice than that of the other, then $h=$
A. ± 2
B. ± 3
C. ± 1
D. $\pm 3 / 2$
129. If the tangent at the point [$4 \cos \phi,(16 / \sqrt{ } 11) \sin \phi]$ to the ellipse $16 x^{23}+11 y^{2}=256$ is also a tangent to a circle $x^{2}+y^{2}-2 x=15$, then the value of ϕ is
A. $\pm \pi / 4$
B. $\pm \pi / 3$
C. $\pm \pi / 6$
D. $\pm \pi / 2$
130. If the sides of a triangle are $13,14,15$, then radius of its in circle is
A. 65/4
B. $67 / 8$
C. 24
D. 4
131. For $n \in Z$, the general solution of the equation $(\sqrt{ } 3-1) \sin \theta+(\sqrt{3}+1) \cos \theta=2$ is
A. $\theta=\mathrm{n} \pi+\left[(-1)^{\mathrm{n}}(\pi / 4)\right]-(\pi / 12)$
B. $\theta=2 \mathrm{n} \pi \pm(\pi / 4)-(\pi / 12)$
C. $\theta=n \pi+\left[(-1)^{\mathrm{n}}(\pi / 4)\right]+(\pi / 12)$
D. $\theta=2 \mathrm{n} \pi \pm(\pi / 4)+(\pi / 12)$
132. The solution of the equation $\cos ^{2} \theta+\sin ^{2} \theta+1=0$ lies in the interval
A. $[5 \pi / 4,7 \pi / 4]$
B. $[3 \pi / 4,5 \pi / 4]$
C. $[\pi / 4,3 \pi / 4]$
D. $[-\pi / 4, \pi / 4]$
133. The line $2 x+y=3$ cuts the ellipse $4 x^{2}+y^{2}=5$ at P and Q. If θ be the angle between the normals at these points,then $\tan \theta=$
A. 3/4
B. $3 / 5$
C. $1 / 2$
D. 5
134. The value of $\sin ^{2} 75^{\circ}-\sin ^{2} 15^{\circ}$ is
A. $1 / 2$
B. $\sqrt{3} / 2$
C. 1
D. 0
135. The number of roots of the equation $[(x+2)(x+5)] /[(x-3)(x+6)]=(x-2) /(x+4)$ is
A. 0
B. 1
C. 2
D. 3
136. If α and β are the roots of $a x^{2}+b x+c=0$, then $1 / \alpha, 1 / \beta$ are the roots of
A. $a x^{2}+c x+a=0$
B. $c x^{2}+a x+a=0$
C. $b x^{2}+a x+a=0$
D. $c x^{2}+a x+b=0$
137. If $x^{2}-x+1=0$, then the value of $x^{3 n}$ is
A. 0
B. -1
C. 1
D. $(-1,1)$
138. The next term of the sequence $1,5,14,30,55$, \qquad is
A. 91
B. 85
C. 90
D. 95
139. In a certain A.P., 5 times the 5th term is equal to 8 times the 8th term, then its 13th term is
A. -13
B. -12
C. -1
D. 0
140. If $x_{1}, x_{2}, \ldots . . ., x_{n}$ are n non-zero real numbers, such that $\left[x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots .+\left(x_{n-1}\right)^{2}\right]\left(x_{2}{ }^{2}+x_{3}{ }^{2}+\right.$
$\left.\ldots .+x_{n}^{2}\right) \leq\left(x_{1} x_{2}+x_{2} x_{3}+\ldots . .+x_{n-1} x_{n}\right)^{2}$ then $x_{1}, x_{2}, \ldots \ldots, x_{n}$ are in
A. H.P.
B. G.P.
C. A.P.
D. none of the above
141. $2 / 1!+4 / 3!+6 / 5!+\ldots . . \infty$ is equal to
A. e +1
B. e-1
C. e^{-1}
D. e
142. The maximum number of points into which 4 circles and 4 straight lines intersect is
A. 50
B. 56
C. 26
D. 72
143. Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. The number of straight lines that can be formed joining them is
A. 153
B. 143
C. 144
D. none of the above
144. The sum of the series $\log _{4} 2, \log _{8} 2+\log _{16} 2 \ldots .$. is
A. e^{2}
B. $\log _{e} 2+1$
C. $\log _{e} 3-2$
D. $1-\log _{\mathrm{e}} 2$
145. If ω is an imaginary cube root of unity,
then $\left|\begin{array}{ccc}2 & 2 \omega & -\omega^{2} \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right|$ is equal to
A. 0
B. -1
C. 1
D. none of the abov
146. The multiplicative
inverse of $A=$$\left[\begin{array}{l}\cos \theta^{-} \sin \theta \\ \sin \theta \\ \cos \theta\end{array}\right]$ is
A. $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$
B. $\left[\begin{array}{ll}-\cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$

$$
\begin{aligned}
& \text { C. } \quad\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& \text { D. } \quad\left[\begin{array}{ll}
-\cos \theta & -\sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

A. $1 / 2$
$\left[\begin{array}{ll}2 & 4 \\ 3 & -5\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 4 \\ 3 & -5\end{array}\right]$
D. none of the above
B. $1 / 2 \quad\left[\begin{array}{ll}-2 & 4 \\ 3 & 5\end{array}\right]$
148. $\Delta=\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|$ is equal to
A. $a^{2}+b^{2}+c^{2}$
B. $a b+b c+c a$
C. $a+b+c$
D. none of the above
149. Equation of a plane parallel to x-axis is
A. $a x+c z+d=0$
B. $b y+c z+d=0$
C. $a x+b y+d=0$
D. $a x+b y+c z+d=0$
150. The angle between the two lines $(x-1) / 2=(y+3) / 2=(z-4) /-1$ and $(x-4) / 1=(y+4) / 2=$ $(\mathrm{z}+1) / 2$ is
A. $\cos ^{-1}(2 / 9)$
B. $\cos ^{-1}(4 / 9)$
C. $\cos ^{-1}(1 / 9)$
D. $\cos ^{-1}(3 / 9)$
151. A car completes the first half of its journey with a velocity v_{1} and the rest half with a velocity v_{2}. Then the average velocity of the car for the whole journey is
A. $(2$
B. $\left(v_{1}+\right.$
C. $\mathrm{v}_{1}+\mathrm{v}_{2}$
D. none of
$\left.\mathrm{v}_{1} \mathrm{v}_{2}\right) /\left(\mathrm{v}_{1}+\begin{array}{l}\text { B. }\left(\mathrm{v}_{1}\right. \\ \left.\mathrm{v}_{2}\right)\end{array}{ }^{2}\right) / 2$ the above
152. The regression coefficient of y on x is $2 / 3$ and of x on y is $4 / 3$. If the acute angle between the regression lines is θ, then $\tan \theta$ is equal to
A. $1 / 9$
B. $2 / 9$
C. $1 / 18$
D. none of the above
153. Fifteen coupons are numbered 1 to 15 . Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be 9 is
A. $(3 / 5)^{7}$
B. $(1 / 15)^{7}$
C. $(8 / 15)^{7}$
D. none of the above
154. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is
A. $8 / 36$
B. 7/36
C. $6 / 36$
D. $5 / 36$
155. Four positive integers are taken at random and are multiplied together. Then the probability that the product ends in an odd digit other than 5 is
A. $3 / 5$
B. 609/625
C. $16 / 625$
D. $2 / 5$
156. If ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$, and ${ }^{n} C_{r+1}=126$, then r is equal to
A. 1
B. 2
C. 3
D. none of the above

157. $\operatorname{Lim}\left(x / \tan ^{-1} 2 x\right)$ is equal to

$$
\mathbf{x} \rightarrow \mathbf{0}
$$

A. $1 / 2$
B. ∞
C. 0
D. 1
158. Let $\mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+1$ for $\mathrm{x}>1$ or $\mathrm{x}+\mathrm{a}$ for $\mathrm{x} \leq 1$, then f derivable ar $\mathrm{x}=1$ if
A. $a=2$
B. $\mathrm{a}=1$
C. $\mathrm{a}=0$
D. $a=1 / 2$
159. If $y=\log \left[\left(1-x^{2}\right) /\left(1+x^{2}\right)\right]$, then $d y / d x=$
A. $4 x^{3} /\left(1-x^{4}\right)$
B. $-4 x /\left(1-x^{4}\right)$
C. $1 /\left(4-x^{4}\right)$
D. $-4 x^{3} /\left(1-x^{4}\right)$
160. The smaller value of the polynomial $x^{3}-18 x^{2}+96 x$ in the interval $[0,9]$ is
A. 126
B. 135
C. 160
D. 0
161. The equation to the normal to the curve $y=\sin x$ at $(0,0)$ is
A. $\mathrm{x}-\mathrm{y}=0$
B. $x+y=0$
C. $\mathrm{y}=0$
D. $x=0$
162. The general solution of the differential equation $d y / d x=y / x$ is
A. $\log y=$ kx
B. $y=k x$
C. $y=k / x$
D. $\mathrm{y}=\mathrm{k}$
$\log x$
163. $\int_{1}^{2} \log \mathrm{xdx}$ is
A. $\log (4 / e)$
B. $\log (2 / e)$
C. $\log 4$
D. $\log 2$
164. If $\cos 2 B=[\cos (A+C)] /[\cos (A-C)]$, then
A. $\tan A, \tan B, \tan C$ are in H.P. are in A.P.
C. $\tan \mathrm{A}, \tan \mathrm{B}, \tan \mathrm{C}$
D. none of the above
165. $\log _{3} 2, \log _{6} 2, \log _{12} 2$ are in
A. A.P.
B. G.P.
C. H.P.
D. none of the above
166. If the sum of the first n natural numbers is one-fifth of the sum of their squares, then n is
A. 5
B. 6
C. 7
D. 8
167. Sum of coefficients in the expansion of (x $+2 y+z)^{10}$ is
A. 2^{10}
B. 3^{10}
C. 1
D. none of
the above
168. The locus of the point z satisfying the condition $\arg [(z-1) /(z+1)]=\pi / 3$ is
A. a straight line
B. a circle
C. a parabola
D. none of the above
169. $(-64)^{1 / 4}$ equals
A. $\pm 2(1+\mathrm{i})$
B. $\pm 2(1-i)$
C. $\pm 2(1 \pm i)$
D. none of the above
170. Let $\mathrm{A}=\sin ^{8} \theta+\cos ^{14} \theta$, then for all c
A. $\mathrm{A} \geq 1$
B. $0<\mathrm{A} \leq 1$
C. $1 / 2<\mathrm{A} \leq 3 / 2$
D. none of the above
171. The minimum value of $(3 \cos x+4 \sin x+8)$ is
A. 5
B. 9
C. 7
D. 3
172. The sum of the series $1+1 / 2+1 / 2^{2}+1 / 2^{3}+\ldots \ldots \ldots \infty$ is equal to
A. 2
B. 3
C. 0
D. 1
173. If $a^{x}=b, b^{y}=c, c^{z}=a$, then the value of xyz is
A. 0
B. 1
C. 2
D. 3
174. The number $\log _{2} 7$ is
A. an
B. a
C. an integer rational irrational
D. a prime number number number
175. The function $f(x)=1 / x$ on its domain is
A. increasing
B. decreasing
C. constant
D. information insufficient
176. Out of 800 boys in a school, 224 played cricket, 240 played hockey,and 336 played basketball. Of the total, 64 played both basketball and hockey, 80 played cricket and basketball, 40 played cricket and hockey, and 24 played all the three games. The number of boys who didn't play any game is
A. 160
B. 240
C. 216
D. 128
177. [$a \mathrm{~b}$ c] is the scalar triple product of three vectors a, b, and c, then [$a b c$] is equal to
A. [b a c]
B. [c ba]
C. [b c a]
D. [a c b]
178. If $u=a x(b x c)+b x(c x a)+c x(b x a)$, then
A. u is a unit vector
B. $u=a+b+c$
C. $u=0$
D. $u \neq 0$
179. If the cube roots of unity are $1, \omega, \omega^{2}$, then the roots of equation $(x-1)^{3}+8=0$ are
A. $-1,1+\quad$ B. $-1,1$ -
C. $-1,-1,-1$ D. none of
$2 \omega, 1+2 \omega^{2} 2 \omega, 1-2 \omega^{2}$ the above
180. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions given by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3, \mathrm{~g}(\mathrm{x})=\mathrm{x}^{3}+5$. Then (fog) $)^{-1}$ (x) is equal to
A. $[(x-7) / 2]^{1 / 3}$
B. $[(x+7) / 2]^{1 / 3}$
C. $(x-7 / 2)^{1 / 3}$
D. $[(x-2) / 7]^{1 / 3}$

