M: Microbiology

Q.1 - 10 carry one mark each

Q.1	Mycoplasmas are different from other prokaryotes by							
	(A)	A) presence of chitin in cell walls						
	(B)	presence of murein in cell walls						
	(C)	presence of proteins in cell walls						
	(D) absence of cell wall itself							
Q.2	Selective media facilitate growth of only one kind of organism. Saboraud's medium is used to selectively isolate							
	(A)	Coliform bacteria	(B)	Gram positive bacteria				
	(C)	Yeasts	(D)	Acid fast organisms				
Q.3	The cell walls of Gram positive bacteria contain two modified sugars, viz., N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). They are covalently linked by							
	(A)	α-1,4-glycosidic bond	(B)	β-1,6-glycosidic bond				
	(C)	α-1,6-glycosidic bond	(D)	β-1,4-glycosidic bond				
Q.4	The metal ion required for the enzymatic activities of nitrogenase and nitrate reductase is							
	(A)	Molybdenum	(B)	Iron				
	(C)	Copper	(D)	Zinc				
Q.5	DNA gyrase is inhibited by							
	(A)	Tetracyclin	(B)	Nalidixic acid				
	(C)	Aurintricarboxylic acid	(D)	Cephalosporin				
Q.6	Surface receptor (IgA) on the target cell is the site of binding of							
	(A)	Hepatitis B virus	(B)	HIV				
	(C)	Rabies	(D)	Influenza A, B viruses				
Q.7	In anoxygenic photosynthesis, the green and purple bacteria do not use the following one as electron source							
	(A)	H ₂ O	(B)	H_2				
	(C)	H ₂ S		188				

Q.8	Marcophages are professional antigen-presenting cells. The protein molecule through which they present antigen in humans is								
	(A)	Actin			(B)	Interleukin	K 22		
	(C)	HLA			(D)	CD8	151		
Q.9	The	organism used for	prodi	uction of '	Jul. 723		es to the	ienus	
		The organism used for production of 'BT' bioinsecticide belongs to the genus							
	(A)	Borrelia			(B)	Bacillus			
	(C)	Bordetella			(D)	Blastobact	er		
Q.10	The	The bacteriophage with a single stranded circular DNA, as genome is							
	(A)	T4 phage			(B)	λ phage			
	(C)	MS2			(D)	φ x 174			
			Q.11	. – 30 carr	y two marks	each			
Q.11	A gr meta	A gram negative rod showed on EMB agar colonies with dark centre and greenish metallic sheen. The organism is							
	(A)	Salmonella			(B)	Shigella			
	(C)	E. coli			(D)	Pseudomor	nas		
Q.12	When	Two antibiotics have different sites of action in a bacterial cell. The frequency of occurrence of resistance to these antibiotics used singly are 10^{-6} and 10^{-6} , respectively. When the antibiotics are used in combination the frequency of occurrence of resistance to both antibiotics are							
	(A)	10 ⁻⁵ (I	3)	10-6	(C)	10-30	(D)	10-11	
Q.13	Species of penicillium, streptomyces and bacteria have been sources of the following group of important biomedical and industrial product(s)								
	(A)	Methane and oth	ner ga	ises					
	(B)	Steroids							
	(C)	Antibiotics							
	(D)	Insulin, interfere	on						
Q.14	In the normal human being the concentration(s) of various antibodies in the serum is (are) in the order								
	(A)	IgM > IgA > IgC	G > I2	E.					
	(B)	IgG > IgA > IgN							
	(C)	IgE > IgG > IgM	-						
	(D)	IgA > IgM > IgE	_						
	CASTONI)	10 11 1811 1 181	7.06	್					

Q.15	The milk Streptococci produce acetoin that gets spontaneously oxidised yielding a flavoring agent (responsible for aroma of butter) is						
	(A)	Acetone	(B)	Acetyl CoA			
	(C)	Butyric acid	(D)	Diacetyl			
Q.16	Syntrophy is the phenomenon where						
	(A) one microorganism degrades a substance and uses it						
	(B) one microorganism degrades the substance and the other microorganism uses it						
	(C) two or more microorganisms cooperate to degrade a substance which neither can do alone						
	(D) two or more organisms can independently degrade the substance but one inhibits the other from doing so						
Q.17	Asso	ciation coefficient SAB is given by the	e express	sion: $2N_{AB}/(N_A + N_B)$			
	Organism A UCACUUCUG-3' PO ₄ Organism B UAUCUAAUG-3' PO ₄						
	S _{AB} value for organisms 1 and 2 is						
	(A)	0.25	(B)	0.50			
	(C)	0.75	(D)	1.00			
Q.18	ATP The p	ATP synthetase is a multifunctional enzyme with a subunit constitution of $\alpha_3\beta_3\gamma\delta\epsilon$. The pair of constituent subunits taking part in nucleotide binding and catalysis are					
	(A)	α1β1	(B)	α2β2			
	(C)	ο3β3	(D)	γδ			
Q.19	The release of terminal D-ala from Park peptide during cross-linking, is catalyzed by						
	(A)	carboxypeptidase					
	(B)	protease					
	(C)	aminopeptidase					
	(D)	transpeptidase					
Q.20	Which one of the following sequences has helped in identifying Eukaryotes, Eubacteria and Archeabacterial cell types?						
	(A)	signature sequence					
	(B)	signal sequence					
	(C)	Shine-Dalgarno sequence					
	(D)	aminoacid sequence					

Q.21	In photoreactivation of UV-exposed cells the enzyme which synthesizes daughter DNA strand at 70 C and also proof-reads is								
	(A)	A) Klenow fragment							
	(B)								
	(C)								
	(D)	Taq polymerase							
Q.22	Leuconostoc mesenteroides when streaked and grown on sucrose medium produces large mucoid colonies. It is due to the synthesis of dextran layer having a chemical structure of								
	(A)	α-glu-β-fru 2 → 6 β-fru	(B)	α-fru-β-glu 2 → 6 β-glu					
	(C)	β-fru-α-glu 1 → 6 α-glu	(D)	β-glu-α-fru 2 \longrightarrow 6 α-fru					
		p soon girt	(12)	p-gra-a-rra 2					
Q.23	Media containing spores and thermolabile constituents are sterilized by								
	(A)	Pasteurization	(B)	UV irradiation					
	(C)	Dry heat	(D)	Tyndallization					
Q.24	A highly aerobic and metabolically versatile organism used in oil-spill-clearing is								
	(A)	(A) Mycobacterium smegmatis							
	(B)	Azotobacter vinelandii							
	(C)	Pseudomonas cepacia							
	(D)	Leuconostoc mesenteroides							
Q.25	Penicillin and lysozyme prevent synthesis and cause lysis, respectively, of cell walls of								
	(A)	Micrococcus lysodeikticus							
	(B)	Escherichia coli							
	(C)	Saccharomyces cerevisiae							
	(D)	Methanobacterium barkeri		*					
Q.26	In Adansonian numerical taxonomy two organisms (a) and (b) tested positive and/or negative to a battery of tests								
	Number of tests positive in both (a) and (b) = 80 Number of tests positive in (a) only = 6 Number of tests positive in (b) only = 4 Number of tests negative in both (a) and (b) = 10								
	Similarity coefficient S _J is								
	(A)	0.88	(B)	0.77					
	(C)	0.66	(D)	0.55					

- Q.27 In Calvin cycle, RubisCO incorporates CO₂ into ribulose 1,5-bisphosphate (1st 6 carbon compound), which rapidly splits into

 (A) glyceraldehyde-3-P
 (B) 2,3-phosphoglyceric acid
 (C) 3-phosphoglycerate
 (D) 1,3-diphosphoglycerate
- Q.28 A bacterial culture had an initial cell density of 10³ cells/ml. In 6 hours the cell density reached 10⁶ cells/ml. Given the formula for the number of generations,

 $n = (\log_{10}N_t - \log_{10}N_0) / 0.301$

The number of generations (n) the cells have undergone is

- (A) 3
- (B) 10
- (C) 15
- (D) 20
- Q.29 Zymomonas mobilis metabolises glucose by Entner-Doudoroff pathway. In this pathway dehydratase converts 6-phosphogluconic acid into
 - (A) phosphogluconic acid
 - (B) 2-keto-6-phosphogluconic acid
 - (C) 2-keto-6-deoxygluconic acid
 - (D) 2-keto-3-deoxyphosphogluconic acid
- Q.30 When a 'pseudomonad' is wet-mounted and observed by microscopy, the motility stops after a few minutes. Motility is restored by adding arginine solution because
 - (A) Arginine replenishes amino acid pool
 - (B) Arginine metabolism yields ATP
 - (C) Arginine gets hydrolysed to citrulline and ammonia
 - (D) Arginine metabolism leads to the formation of other amino acids

End of Section M