

Physics	1	

1. N molecules each of mass m and v velocity collides with a wall of a container a	nd
then absorbed, the pressure applied on the wall is :	

(1) mNV^2 (2) $\frac{\text{mNV}^2}{3}$ (3) 2 mNV^2 (4) $\frac{\text{mNV}^2}{2}$

2. The law of far a day is obtained by conservation of :

(1) Charge

(2) Energy (3) Energy and magnetic field (4) Magnetic field

3. There is a q charge placed in the centre of a cube, then the emergent flux is:

(1) <u>q</u> 6∈0 $(2) \underline{q} \qquad (3) \underline{q} \qquad (4) \underline{q}$

 $8 \in \mathfrak{g}$ $2 \in \mathfrak{g}$

 $\in \Omega$

4. Two thin lenses are put close to each other, focal length of the combination is:

(1) less than the small focal length

(2) more than the bigger focal length

(3) equal to the arithmetical average of the focal length

(4) equal to the geometrical average of the focal length

5. A car is moving on a horizontal circular path with 10 m/s constant speed. A rigid body is suspended from ceiling of car with a 1 m. long light rod, the angle between rod and path is:

 $(1) 60^0$

 $(2) 45^0$

(3) 30^0 (4) zero

6. Two sources of E_1 and E_2 emf r_1 and r_2 internal, resistances, are connected in the parallel combination, the emf of the combination is :

(1) $\underline{E_1E_2}_{E_1+E_2}$ (2) $\underline{E_2r_1 + E_1r_2}_{r_1+r_2}$ (3) $\underline{E_1r_1 + E_2r_2}_{r_1+r_2}$ (4) $\underline{E_1 + E_2}_{2}$

7. In a AC circuit R=0 $\Omega\Omega X_L=8\Omega\Omega$ and $X_C=6\Omega\Omega$ hase difference between voltage and current is: $(1) 11^0$ $(2) 45^0$ $(3) 37^0(4) 12^0$

8. Relative permeability of a medium is $\mu\mu$ and relative permittivity is $\in \subseteq$ then the velocity of an electro magnetic wave is:

9. Ration of a pressure is:	radius of two s	oap bubbles is	s 2 : 1 then t	he ratio of their excess
(1) 2 : 1	(2) 4:1	(3) 1:4	(4) 1: 2	
10. Ratio of so	ound velocities	s is H ₂ and O ₂	will be:	
(1) 32 : 1	(2) 1 : 4	(3) 16:1	(4) 4 : 1	
11. In which (1) em waves (2) longitudion (3) stationary (4) transverse	waves	ne energy is no	t propagate	d:
displacement	is $x = \underline{t^3}$ where	x in meter an	d t in time v	tion between time and work done in first two seconds
(1) 1.6 J	3 (2) 16 J	(3) 160 J	(4) 1600 J	
frictionless ta whole chain o	ble and one th	ird part is ver	tically suspe	d part of chain is on a ended, work done to pull the
14. If the inte (1) photo elect (2) kinetic ene (3) kinetic ene (4) the kinetic	nsity and frequence current will ergy of the emitergy of electronsenergy of electronsener	become is time ted electron will be 4 time rons will be 2 to	ent light is des es Il be increase es cimes	d and current will be 2 times half distance with 60 kmph
then the average (1) 60 kmph	age speed of ca (2) 52	ar is : kmph (3) 48	kmph (4) 4	_
radius then the	ne ratio of thei	r centripetal f	orces is :	_
(1) <u>r</u> 2	$(2)\sqrt{\frac{\underline{r_2}}{r_1}}$	$(3) \left[\begin{array}{c} \underline{\mathbf{r}}_1 \\ \underline{\mathbf{r}}_2 \end{array} \right]$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}^2 \qquad (4)$	$\begin{pmatrix} \underline{r_2} \\ \underline{r_1} \end{pmatrix}^2$

17. No. of electrons in the $_{\rm 92}$ U $^{\rm 235}$ nucleus is :

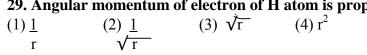
(1) 143

(2) 235

(3) 92

(4) zero

www.lbigDeal.com photon and electron is λ_{ph} and λ_{e} and energy (E) of the two is same then: (1) the difference can be obtain if E is given (2) $\lambda e > \lambda ph$ (3) λph . λe (4) $\lambda ph = \lambda e$


19. <i>A</i>	ift is moving with acceleration a in upward direction then the force applied	by
mas	n on the floor of lift will be :	

- (1) ma (2) m(g-a) (3) m(g+a) (4) mg
- 20. Two cars of m_1 and m_2 mass are moving in the circular paths of r_1 and r_2 radius, their speed is such that they travels one cycle in the same time, the ratio of their angular velocities is :
- (1) $m_1r_1 : m_2r_2$ (2) 1 : 1 (3) $r_1 : r_2$ (4) $m_1 : m_2$
- 21. A ring of mass M, radius r is moving with angular velocity w, if another two bodies each of mass m is placed on its diameter, the resultant angular velocity will be:
- $\begin{array}{cccc} (1) & \underline{w(M+2m)} & & (2) \, \underline{w(M-2m)} & & (3) \, \underline{wM} & & (4) \, \underline{wM} \\ M & & (M+2m) & & (m+m) & & (M+2m) \end{array}$
- 22. The wavelength of 1 ke V photon 1.25 x 10^{-9} m the frequency of Me V photon will be:
- (1) 1.24×10^{23} (2) 2.4×10^{23} (3) 2.4×10^{23} (4) 1.24×10^{15}
- **23. Size of nucleusis of the order of :** (1) 10^{-13} cm (2) 10^{-10} cm. (3) 10^{-8} cm. (4) 10^{-15} cm.
- 24. If MI, angular acceleration and torque of body is I, ∞ and τ , it is revolving with ω angular velocity then :
- (1) $\tau = \underline{\alpha}$ (2) $M = \underline{1}$ (3) $\tau = I\alpha$ (4) $\tau = I\omega$

25. In a uniform circular motion:

- (1) both acceleration and speed changes
- (2) both acceleration and speed are constant
- (3) both acceleration and velocity are constant
- (4) both acceleration and velocity changes
- 26. Ratio of average kinetic evergies of H_2 and O_2 at a given temp. is :
- (1) 1 : 1 (2) 1 : 4 (3) 1 : 8 (4) 1 : 16
- 27. To make the working of a machine, free of magnetism, the cover of this machine must be of :
- (1) non magnetic substance
- (2) diamagnetic substance
- (3) paramagnetic substance
- (4) ferro magnetic substance

u.J big <mark>DeaL.com</mark>				
28. λ_{α} , λ_{β} and $\lambda_{\rm r}$ are the wavele	engths of k $_{\alpha}$, k $_{\beta}$ and k $_{r}$ lines of X-ray spectrum then :			
$(1) \lambda_{\beta} > \lambda_{a} > \lambda_{r} (2) \lambda_{\alpha} < \lambda_{B} < \lambda_{r}$	(3) $\lambda_{\alpha} > \lambda_{\beta} > \lambda_{r}$ (4) $\lambda_{\alpha} = \lambda_{\beta} = \lambda_{r}$			
29. Angular momentum of elec	tron of H atom is proportional to :			

30. MI, rotational kinetic energy and angular momentum of a body is I, E and L then:

(1)
$$E = L^2$$
 (2) $E^2 = 2I$ (3) $E = 2IL$ (4) $L = E^2$ 2I

31. In a diode value, the state of saturation can be obtained easily by :

- (1) high plate voltage and high filament
- (2) low filament current and high plate voltage
- (3) low plate voltage and high plate tem
- (4) high filament current and high plate voltage

32. A magnet is dropped in a long coppertube vertically, the acceleration of magnet:

(1) equal to g (2) less than g (3) zero (4) greater than g

33. Joule-second is unit of:

- (1) rotational power
- (2) angular momentum
- (3) rotational energy
- (4) torgue

34. A 3 coulomb charge enerts 3000 N force in a uniform electrical field, the distance between two points is 1 cm. potential difference will be :

(1) 9000 V (2) 1000 V (3) 90 V (4) 10 V

35. 1000 drops, each v volt, are combined to form a big drop, then the potential of the drop will be how many times:

(1) 1 (2) 10 (3) 100 (4) 1000

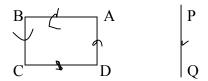
36. A plane is revoloying around the earth with 100 km./hr. speed at a earth, the changes in the velocity as it travels half circle is:

(1) $100 \sqrt{2 \text{ kmph}}$ (2) 150 kmph (3) 200 kmph (4) zero

37. 3×10^7 kg. water is initially constant and it is displaced 3 m. by applying 5×10^4 N force. Velocity of water will be (if resistance of water is zero):

(1) 50 m/sec. (2) 0 1 m/sec. (3) 60 m/sec. (4) 1.5 m/sec.

www.	Jbig Deal	t stone Circuit P	$P = Q = 10\Omega$ an	$dR = S = 15 \Omega$	and $G = 20 \Omega$. If a cell of 1.5
	volt emf is us (1) 0.021 amp	ed, the current	drawn from the	e cell is:	(4) 0.125 amp
	then the Lissa	es of same frequipou's figure wi (2) an ellipse	ll be :	_	if the phase difference is $\pi/2$
					are mixed in equal ratio then
	the r of mixtu				, and miniou in equal ratio then
	-		n paraffine is 2. (3) 1.45		. then the dielectric constant is:
	42. After emi (1) A – 4, Z –	ssion of a β-par - 2 (2) A,	ticle, the nucle Z-1 (3) A,	us : Z-2 (4) A -	+ 2, Z
	m radius circu	n a proton is 9.6 ular path, the er (2) 12.02	nergy of proton	in Mev.	ng in a 1T magnetic field in 0.5
	44. If $\frac{d^2\omega}{dx^2}$	$+ \alpha x = 0$ then t	the angular free	quency will be:	
	(1) $\sqrt{\alpha}$	$(2) \alpha^2$	$(3) \alpha$	(4) zero	
	(1) therories of (2) photo election (3) theory of the contract	etric effect			
		turation current	the ratio of pla	ite currents at 4	00 v and 200 v plate voltage
	is: (1) <u>1</u>	(2) 2	$(3) 2\sqrt[4]{2}$	(4) $\frac{\sqrt{2}}{4}$	
	47. If $I = I_0 \text{ si}$	n (ω t - π /2) and (2) $\underline{E_0}\underline{I_0}$	$E = E_0 \sin \omega t$	then the power	loss is:
	pressure is 0.4	p. of an ideal ga 4%, the initial to (2) 200°K	emp. of the gas	is:	ased 1 ^o C, the increase in
	of the value is	$5 40^{\circ}$. The ratio			, amplification factor of each en used with $4k\Omega$ load
	resistance, wi (1) 10		(3) 4/3	(4) 16/3	


51. Focal length of a convex lens is 16 cm. it is dipped in water. The refractive indices of the substance of lens and water are 1.5 and 1.33 resp., now the focal length will be:

(3) 24.24 cm. (4) 16 cm. (1) 64 cm. (2) 18 cm.

52. In a half wave rectifier circuit, the input signal frequency is 50 Hz, the the output frequency will be:

(1) 25 Hz (3) 200 Hz (2) 50 Hz (4) 100 Hz

53. In the following circuit:

(1) the loop will be displaced along the length of wire

- (2) PQ unchanged
- (3) the loop will repell the wire
- (4) wire will attract the loop
- 54. In a triode the ratio of small change in plate voltage and small changes in grid voltage is, if plate current is constant:
- (1) DC plate resistance
- (2) mutual conductance
- (3) AC plate resistance
- (4) amplification factor
- 55. Two particles accelerated with same voltage eneters in a uniform magnetic field perpendicularly, the radii of the circular paths is R₁ and R₂, the charge on particles is same the ratio of \underline{m}_1 is :

$$(1) \quad \left[\frac{\underline{R_2}}{R_1}\right]^2 \qquad \qquad (2) \quad \underline{R_2} \qquad \qquad (3) \quad \underline{R_1} \qquad \qquad (4) \left[\frac{\underline{R_1}}{R_2}\right]^2$$

- 56. Light Velocity in diamond is ($\mu = 2.0$)
- (1) 60×10^{10} cm/sec. (2) 2×10^{10} cm/sec. (3) 3×10^{10} cm/sec.

- (4) 1.5×10^{10} cm/sec.
- 57. If Arsenic is dopped to silicon then its conductivity:
- (1) becomes zero
- (2) unchanged
- (3) increases
- (4) decreases

www

the escape velocity will be:

(2) 1 : 2

(2) 1.5

(2) kg

(2) 8

(1) Q constant V and U decreases (2) Q constant V increases U decreases (3) Q increases V decreases U increases

circumference and parallel to diameter is:

r

cool from 60° C to 30° C, if room temp. is 20° C:

(1) 15.5 km/sec.

momentum is:

(1) 40 minute

is: (1) 1.83

(1) \underline{kq}^2

(1) $2\sqrt{2}$

pressure will be:

(1) 32 times

(4) None

(1) 1 : 16

.Jbig <mark>DeaL.co</mark>	m				
	attery is remove	d and dielectric		n parallel and these are charg um of k constant is put betwe	
$(1) \frac{v}{k+2}$			(4)	3 <u>v</u> k+2	
59. Equation of wave is $y = 15 \times 10^{-2} \sin (300t - 100x)$ where x in meter and t in sec. the wave velocity is :					
(1) 1.5 m/sec. (2) 3 60. Escape velocity	` /	` '		if radius of earth is doubled t	hen

(2) 5.5 km/sec.(3) 11 km/sec. (4) 22 km/sec.

(4) 4:1

61. Kinetic energies of two bodies of 1 kg. and 4 kg. are same, the ratio of their

62. A body takes 5 minute to cool from 30°C to 50° C. How much time it will take to

(2) 10 minute (3) 30 minute (4) 20 minute

63. AC voltage is $v = 200 \sin 300t$ and if $R = 10\Omega$ and L = 800 mH, peak value of current

64. Two charges + q and - q are placed at r distance from each other. If one of the charge

(4).83

(4) zero

(4) 4

(3) 8 times

(4) <u>24</u> times <u>5</u>

66. A monoatomic gas is compressed to its $1/8^{th}$ volume adiabatically (r = 5/3), the

67. A condenser is charged and then battery is removed, a dielectric plate is put between

68. The MI of a disc wrt its diameter is I, MI wrt. And axis passing through its

(3) $\sqrt{2}:1$

(3) 2.0

is stationary and other is rotated around, work done is one circle is:

 $(3) kq^2$

 $(3) 4 \sqrt{2}$

65. Peak value of AC current is $4\sqrt{2}$, RMS current is :

 $(2) \ \underline{40} \text{ times}$

the plates of condenser, then correct statement is:

current is pass	sed in the wires		ce between the wires is 1 m. If 1 amp. t length between the wires is: 7(4) None
theory of gase		-	absolute temp. T of an ideal gas as kinetic
71. Light wav	relength in a gla	ass is 6000Å ar	nd refractive index is 1.5, the wavelength
	(2) 4000 Å	(3) 9000 Å	(4) 6000 Å
If A is loaded		-	ar to each other produces 4 beats per second e produced. If the frequency of A is 256 Hz,
(1) 262		(3) 252	(4) 250
	e to rotate a dip (2) – 2 PE		gle, is: (4) PE
74. Zener dioc (1) rectifier	de may be used (2) ose		aplifier (4) voltage regulator
line of Balme	th of first line or series will be (2) 4860 Å	:	tes is 6561 Å then the wavelength of second (4) 2430 Å