MATHEMATICS - 1998

DART A

FAI	/ı - \
the alternatives given below each qu question may have ONE OR MORE co marks for a given question, ALL correc	o 40 carefully and choose from amongs testion the correct lettered choice(s). A prrect alternatives. In order to secure any ct lettered alternative(s) must be chosen.
1. If ω is an imaginary cube root o (A) 128ω (C) $128 \omega^2$	f unity, then $(1 + \omega - \omega^2)^7$ equals : (B) -128ω (D) $-128 \omega^2$.
2. Let T_r be the r^{th} term of an A integers m , n we have $T_m = \frac{1}{n}a$ (A) $\frac{1}{mn}$	$(B) \frac{1}{m} + \frac{1}{n}$
 (C) 1 3. In a college of 300 students, even newspaper is read by 60 studer (A) at least 30 (C) exactly 25 	(D) 0 very student reads 5 newspapers and even nts. The number of newspapers is: (B) at most 20 (D) none of the above
•	m PQRS are along the lines $x + 3y = 4$ and be a: (B) square (D) rhombus.
$x^{2} + y^{2} - 6x - 8y = 24$ is: (A) 0 (C) 3 6. Let $f(x) = x - [x]$, for every real	angents to the circles $x^2 + y^2 = 4$ and (B) 1 (D) 4 I number x, where [x] is the integral part of x
Then $\int_{-1}^{1} f(x) dx$ is: (A) 1 (C) 0 7. If $P = (x, y), F_1 = (3, 0), F_2 = (3, 0)$	(B) 2 (D) $\frac{1}{2}$ (-3, 0) and $16x^2 + 25y^2 = 400$, the
$PF_1 + PF_2$ equals : (A) 8 (C) 10	(B) 6 (D) 12

8.	If P (1, 2),	Q (4,	6), R (5, 7)	and $S(a,$	b) are th	e vertices	of a	parallelogram
	PQRS, the	en :						

(A) a = 2, b = 4

(B) a = 3, b = 4

(C) a = 2, b = 3

- (D) a = 3, b = 5
- **9.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors and $|\vec{c}| = \sqrt{3}$, then:
 - (A) $\alpha = 1, \beta = -1$

- (B) $\alpha = 1$, $\beta = \pm 1$
- (C) $\alpha = -1, \beta = \pm 1$
- (D) $\alpha = \pm 1$, $\beta = 1$
- 10. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the probability that 2 white and 1 black ball will be drawn is:
 - (A) $\frac{13}{32}$

(B) $\frac{1}{4}$

(C) $\frac{1}{32}$

- (D) $\frac{3}{16}$
- **11.** The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals :
 - (A) i

(B) i - 1

(C) -i

- (D) 0
- **12.** The number of values of x where the function $f(x) = \cos x + \cos(\sqrt{2x})$ attains its maximum is:
 - (A) 0

(B) 1

(C) 2

- (D) infinite
- **13.** If $f(x) = \frac{x^2 1}{x^2 + 1}$ for every real number x, then the minimum value of f:
 - (A) does not exist because f is unbounded.
 - (B) is not attained even though f is bounded
 - (C) is equal to 1
 - (D) is equal to -1
- **14.** Number of divisors of the form 4n + 2 ($n \ge 0$) of the integer 240 is :
 - (A) 4

(B) 8

(C) 10

(D) 3

15.
$$\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}$$
:

- (A) exists and it equals $\sqrt{2}$
 - (B) exists and it equals $-\sqrt{2}$
 - (C) does not exist because $x 1 \rightarrow 0$
 - (D) does not exist because left hand limit is not equal to right hand limit

16.		sin R are in A. P., then : (B) the altitudes are in H. P. (D) the medians are in A. P.			
		•			
17.	If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$	equals :			
	(A) $(n-1)a_n$	(B) nan			
	(C) $\frac{1}{2}$ na _n	(D) None of the above			
18.	following points of the triangle PQ (A) centroid (C) circumcentre	(B) incentre (D) orthocentre			
		phose co-ordinates are rational numbers)			
19.		t the straight line $y = 4x + c$ touches the			
	curve $\frac{x^2}{4} + y^2 = 1$ is:				
	(A) 0 (C) 2	(B) 1 (D) infinite.			
20.	If $x > 1$, $y > 1$, $z > 1$ are in G. P., t	hen $\frac{1}{1 + \ln x}$, $\frac{1}{1 + \ln y}$, $\frac{1}{1 + \ln z}$ are in:			
	(A) A.P. (C) G.P.	(B) H.P. (D) None of the above			
21.	The number of values of x in th $3 \sin^2 x - 7 \sin x + 2 = 0$ is:	e interval $[0, 5\pi]$ satisfying the equation			
	(A) 0	(B) 5			
	(C) 6	(D) 10			
22.	. The order of the differential equation whose general solution is given by $y = (C_1 + C_2) \cos(x + C_3) - C_4 e^{x + C_5}$ where C_1, C_2, C_3, C_4, C_5 are				
	arbitrary constants, is:	(7)			
	(A) 5 (C) 3	(B) 4 (D) 2			
23.	If $g(f(x)) = \sin x $ and $f(g(x)) = \sin x $				
	(A) $f(x) = \sin^2 x, g(x) = \sqrt{x}$	(B) $f(x) = \sin x, g(x) = x $			
	(C) $f(x) = x^2, g(x) = \sin \sqrt{x}$	(D) f and g cannot be determined			
24	radius. Then the product of the le	ular hexagon inscribed in a circle of unit ngths of the line segments A_0 A_1 , A_0A_2			
	and A_0 A_4 is: (A) $\frac{3}{4}$	(B) 3√3			
	(C) 3	(D) $\frac{3\sqrt{3}}{2}$			

- **25.** For three vectors u, v, w which of the following expressions is not equal to any of the remaining three?
 - (A) $\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$

(B) $(v \times w) \cdot u$

(C) $v \cdot (u \times w)$

- $I(D) \stackrel{\rightarrow}{(u \times v)} \stackrel{\rightarrow}{w}$
- **26.** There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is:
 - (A) $\frac{1}{3}$

(B) $\frac{1}{6}$

(C) $\frac{1}{2}$

- (D) $\frac{1}{4}$
- **27.** Let $h(x) = \min \{x, x^2\}$, for every real number of x. Then:
 - (A) h is continuous for all x
 - (B) h is differentiable for all x
 - (C) h'(x) = 1, for all x > 1
 - (D) h is not differentiable at two values of x
- **28.** If f(x) = 3x 5, then $f^{-1}(x)$:
 - (A) is given by $\frac{1}{3x-5}$
 - (B) is given by $\frac{x+5}{3}$
 - (C) does not exist because f is not one-one
 - (D) does not exist because f is not onto.
- **29.** If \overline{E} and \overline{F} are the complementary events of events E and F respectively and if 0 < P(F) < 1, then.
 - (A) $P(E/F) + P(\overline{E}/F) = 1$
- (B) $P(E/F) + P(E/\overline{F}) = 1$
- (C) $P(\overline{E}/F) + P(E/\overline{F}) = 1$
- (D) $P(E/\overline{F}) + P(\overline{E}/\overline{F}) = 1$
- 30. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then:
 - (A) x = 3, y = 1

(B) x = 1, y = 3

(C) x = 0, y = 3

- (D) x = 0, y = 0
- **31.** A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss equals:
 - (A) $\frac{1}{2}$

(B) $\frac{1}{32}$

(C) $\frac{31}{32}$

(D) $\frac{1}{5}$

32.	An n – digit number is a positive number with exactly n digits. Nine hundred
	distinct n -digit numbers are to be formed using only the three digits 2, 5
	and 7. The smallest value of n for which this is possible is:

$$(A)$$
 6

33. Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals :

(A)
$$\frac{1}{2}$$

(B)
$$\frac{7}{15}$$

(C)
$$\frac{2}{15}$$

(D)
$$\frac{1}{3}$$

34. Let n be an odd integer. If $\sin n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$, for every value of θ , then:

(A)
$$b_0 = 1, b_1 = 3$$

(B)
$$b_0 = 0, b_1 = n$$

(C)
$$b_0 = -1, b_1 = n$$

(D)
$$b_0 = 0$$
, $b_1 = n^2 - 3n + 3$

35. Which of the following number(s) is/are rational?

36. If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4)$, then:

(A)
$$x_1 + x_2 + x_3 + x_4 = 0$$

(B)
$$y_1 + y_2 + y_3 + y_4 = 0$$

(C)
$$x_1 x_2 x_3 x_4 = c^4$$

(D)
$$y_1 y_2 y_3 y_4 = c^4$$

37. If E and F are events with $P(E) \leq P(F)$ and $P(E \cap F) > 0$, then :

- (A) occurrence of $E \Rightarrow$ occurrence of F
- (B) occurrence of $F \Rightarrow$ occurrence of E
- (C) non-occurrence of $E \Rightarrow$ non-occurrence of F
- (D) none of the above implications holds

38. Which of the following expressions are meaningful question

(A)
$$\vec{u} \cdot (\vec{v} \times \vec{w})$$

(B)
$$(u \cdot v) \cdot w$$

(C)
$$(\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$$

(D)
$$\overrightarrow{u} \times (\overrightarrow{v} \cdot \overrightarrow{w})$$

39. If $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$, then the value of f(1) is:

(A)
$$\frac{1}{2}$$

(D)
$$-\frac{1}{2}$$

Download from www.JbiqDeal

- **40.** Let $h(x) = f(x) (f(x))^2 + (f(x))^3$ for every real number x. Then:
 - (A) h is increasing whenever f is increasing
 - (B) h is increasing whenever f is decreasing
 - (C) h is decreasing whenever f is decreasing
 - (D) nothing can be said in general.

ANSWERS

1. (D)	2. (C)	3. (C)	4. (D)	5. (B)	6. (A)
7. (C)	8. (C)	9. (D)	10. (A)	11. (B)	12. (A)
13. (D)	14. (A)	15. (D)	16 (B)	17. (C)	18. (A)
19. (C)	20. (B)	21. (C)	22. (C)	23. (A)	24. (C)
25. (C)	26. (B)	27. (A), (C)	, (D) 28. (B)	29. (A), (D)	30. (D)
31. (A)	32. (B) B), (C), (D)	33. (B) 37. (D)	34. (B) 38. (A), (C)	35. (C) 39. (A)	40. (A), (C)

SOLUTIONS

1.
$$(1 + \omega - \omega^2)^7 = (-\omega^2 - \omega^2)^7$$

= $(-2\omega^2)^7 = (-2)^7(\omega^2)^7 = -128 \cdot \omega^{14} = -128\omega^2$

Therefore, (D) is the Ans.

2.

Let
$$T_m = a + (m-1) d = \frac{1}{n}$$

and $T_n = a + (n-1) d = \frac{1}{m}$
 $\Rightarrow (m-n) d = \frac{1}{n} - \frac{1}{m} = \frac{m-n}{mn} \Rightarrow d = \frac{1}{mn}$
Again $T_{mn} = a + (mn-1) d$
 $= a + (mn-n+n-1) d$
 $= a + (n-1) d + (mn-n) d$
 $= T_n + n(m-1) \cdot \frac{1}{mn}$
 $= \frac{1}{m} + \frac{(m-1)}{m} = \frac{1}{m} + 1 - \frac{1}{m} = 1$

Therefore, (C) is the Ans.

Let number of newspaper which are read be n. Then $60n = 300 \times 5$ n = 25

Therefore, (C) is the Ans.

x + 3y = 4 is -1/3Slope of 4. slope of 6x - 2y = 7 is 3.