1. The value of
$$\sum_{n=1}^{13} (i^n + i^{n+1})$$
, where $i = \sqrt{-1}$

equals

(b) i - 1

(a) i (c) - i

(d) 0

2. If $4 \sin^{-1} x + \cos^{-1} x = \pi$, then the value of x is

(a) 0 (c) 1

(b) 1/2 (d) - 1

3. There are n different books and p copies of each. The number of ways in which a selection can be made from them, is

(a) n^p

(b) p"

(c) $(p+1)^n-1$ (d) $(n+1)^p - 1$

- 4. The circle S_1 with centre C_1 (a_1, b_1) and radius r_1 touches externally the circle S_2 with centre $C_2(a_2, b_2)$ and radius r_2 . If the tangent at their common point passes through the origin. then
 - (a) $(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r_1^2 + r_2^2$ (b) $(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = r_1^2 - r_2^2$ (c) $(a_1^2 - b_2)^2 + (a_2^2 + b_2^2) = r_1^2 + r_2^2$

(d) $(a_1^2 - b_1^2) + (a_1^2 + b_2^2) = r_1^2 + r_2^2$

5. If three vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are such that $\mathbf{a} \neq 0$ and $a \times b = 2(a \times c), |a| = |c| = 1, |b| = 4$ and the angle between **b** and **c** is $\cos^{-1}\left(\frac{1}{4}\right)$. Also

 $b - 2c = \lambda a$, then find the value of λ

(a) ± 4

(b) 14

 $(c) \pm 2$ (d) 12

6. A vector which makes equal angle with the vectors 1/3(i-2j+2k), 1/5(-4i-3k)and j is

(a) 5i + j + 5k(c) 5i - j - 5k (b) -6i + i + 5k(d) 5i + j - 5k

7. If $\mathbf{a} \cdot \mathbf{b} = 0$ and $\mathbf{a} + \mathbf{b}$ makes an angle of 30° with a. then

(a) |b| = 2|a|

(b) |a| = 2|b|

(c) $|a| = \sqrt{3}|b|$

(d) None of these

8. In Simpson's one-third rule the curve y = f(x) is assumed to be a

(a) circle

(b) parabola (c) hyperbola (d) None of these

9. Objective of LPP is

(a) a constraint

- (b) a function to be optimized (c) a relation between the variables
- (d) None of the above
- 10. The variance of first 'n' natural number is

(a) $\frac{n^2+1}{12}$ (b) $\frac{n^2-1}{12}$

(c) $\frac{(n+1)(2n+1)}{4}$ (d) None of these

11. In Boolean algebra, which of the following statement is correct

(a) (a + b)' = a' + b'

(b) $(a + b)' = a' \cdot b'$ (c) $(a+b)' = (a' \cdot b')$

(d) None of the above

12. The function x^x decreases in the interval

(a) (0, e)(b) (0, 1) (c) (0, 1/e)(d) None of these

13. The period of the function $f(x) = (\sin 3x) + |\cos 6x|$ is (b) $2\pi/3$ (c) 2π (d) $\pi/2$ (a) π

14. The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive perimeter, is of (a) order 1, degree 3 (b) order 2, degree 2

(c) degree 3, order 3 (d) degree 4, order 4

15. If
$$\int \sqrt{1+\sin x} \cdot f(x) \, dx = \frac{2}{3} (1+\sin x)^{3/2} + C,$$

then f(x) is equal to

- (a) $\cos x$
- (b) $\sin x$
- (c) tan x
- (d) 1

16.
$$\int x \sqrt{\frac{1-x}{1+x}} dx$$
 is equal to

(a)
$$\left(\frac{x}{2}-1\right)\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x+C$$

(b)
$$\left(\frac{x}{2}-1\right)\sqrt{1-x^2}-\frac{1}{2}\sin^{-1}x+C$$

- (c) $\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}x + C$
- (d) None of the above

17. If
$$x = \sec \theta - \cos \theta$$
 and $y = \sec^n \theta - \cos^n \theta$,

then
$$\left(\frac{dy}{dx}\right)^2$$
 is

- (a) $\frac{n^2(y^2+4)}{y^2+4}$ (b) $\frac{n^2(y^2-4)}{y^2}$
- (c) $n \frac{(y^2 4)}{y^2 4}$ (d) $\left(\frac{n y}{x}\right)^2 4$

18. The area formed by triangular shaped region bounded by the curves
$$y = \sin x$$
, $y = \cos x$ and $x = 0$ is

- (a) $(\sqrt{2}-1)$ sq unit
- (b) 1 sq unit
- (c) $\sqrt{2}$ sq units
- (d) $(\sqrt{2} + 1)$ sq units

19. Find the value of
$$\int_0^{\pi/2} \frac{dx}{1 + \tan^3 x}$$

(a) 0

- (b) 1
- (c) $\pi/2$
- (d) $\pi/4$

20. The angle of intersection of the curve
$$y = x^2$$
 and $6y = 7 - x^3$ at $(1, 1)$ is

- (a) $\pi/4$
- (b) $\pi/3$
- (c) $\pi/2$
- (d) None of these

21. If
$$I_{m,n} = \int_0^1 x^m (\log x)^n dx$$
, then it is equal to

- (a) $\frac{n}{n+1}I_{m,n-1}$ (b) $\frac{-m}{n+1}I_{m,n-1}$
- (c) $\frac{-n}{m+1}I_{m,n-1}$ (d) $\frac{m}{n+1}I_{m,n-1}$

22.
$$\frac{d}{dx} \operatorname{cosec}^{-1} \left(\frac{1+x^2}{2x} \right)$$
 is equal to

(a)
$$\frac{-2}{(1+x^2)}$$
, $x \neq 0$

(b)
$$\frac{2}{(1+x^2)}$$
, $x \neq 0$

(c)
$$\frac{2(1-x^2)}{(1+x^2)|1-x^2|}$$
, $x \neq \pm 1$, 0

(d) None of the above

23. If
$$\lim_{x \to 0} \phi(x) = a^3$$
, $a \ne 0$, then $\lim_{x \to 0} \phi(x/a)$ is equal to

(a) a^2

- (b) $1/a^3$
- (c) $1/a^2$
- (d) a^3

24. If
$$(1 + \tan \theta) (1 + \tan \phi) = 2$$
, then $(\theta + \phi)$ is equal to

(a) 30°

(b) 45°

(c) 60°

(d) 75°

25. If in a
$$\triangle ABC$$
, $\cos A + \cos B + \cos C = 3/2$, then triangle is

- (a) right angled
- (b) isosceles
- (c) acute
- (d) equilateral

26. If the line
$$x - 1 = 0$$
 is the directrix of parabola $y^2 - kx + 8 = 0$, then one of the value of k is

(a) 1/8

(b) 8

(c) 4

(d) 1/4

27. The centre of the sphere through the points
$$(0, 3, 4), (0, 5, 0), (4, 0, 3)$$
 and $(-3, 4, 0)$ is

- (a) (1/4, 3, 7/4)
- (b) (0, 0, 0)
- (c) (-4, 3, 0)
- (d) None of these

28. Solve
$$(y \log x - 1) y dx = x dy$$

- (a) $y (\log ex + cx) = 1$
- (b) $y = (\log ex + cx)$
- (c) $y (\log ex (x)) = -1$
- (d) None of the above

29. If
$$f(x) = \int_{-1}^{x} |t| dt$$
, $x \ge -1$, then

- (a) f and f' are continuous for x + 1 > 0
- (b) f is continuous but f' is not continuous for x + 1 > 0
- (c) f and f' are not continuous at x = 0
- (d) f is continuous at x = 0 but f' is not so

- **30.** AB, AC are tangents to a parabola $y^2 = 4ax$, if l_1 , l_2 , l_3 are the lengths of perpendiculars from A, B, C on any tangents to the parabola, then
 - (a) l_1 , l_2 , l_3 are in GP
 - (b) l_2 , l_1 , l_3 are in GP
 - (c) l_3 , l_1 , l_2 are in GP
 - (d) l_3 , l_2 , l_1 are in GP
- 31. A family of lines is given $(1+2\lambda)x + (1-\lambda)y + \lambda = 0$, λ being the parameter. The line belonging to this family at the maximum distance from the point (1,4) is

 - (a) 4x y + 1 = 0 (b) 33x + 12y + 7 = 0
 - (c) 12x + 33y = 7 (d) None of these
- 32. If the eccentricity of the hyperbola $x^2 - y^2 \sec^2 \alpha = 5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^2 \sec^2 \alpha + y^2 = 25$, then the value of α is
 - (a) $\pi/6$
- (b) $\pi/4$
- (c) $\pi/3$
- (d) $\pi/2$
- 33. Lines of regressions of y on x and x on y are respectively y = ax + b and $x = \alpha y + \beta$. If mean of x and y series is same, then its value
 - (a) $\frac{b}{1-a}$ (b) $\frac{1-a}{b}$
 - (c) $\frac{\beta}{1-\beta}$
- (d) $\frac{\alpha}{1-\alpha}$
- 34. A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$ is
 - (a) y = 2

- (a) y = 2(b) y = 2x(c) y = 2x 4(d) $y = 2x^2 4$
- 35. The relation between the time t and distance 'x' is given by $t = px^2 + qx$, where p and q are constants. The relation between velocity v and acceleration f is
 - (a) $f \propto v$
- (b) $f \propto v^4$
- (c) $f \propto v^2$
- (d) $f \propto v^3$
- **36.** The product of $x^{1/2} \cdot x^{1/4} \cdot x^{1/8} \dots \infty$ equals
 - (a) 0

(b) 1

(c) x

(d) ∞

- 37. If the equation $x^2 + ix + a = 0.$ $x^2 - 2x + ia = 0$, $a \ne 0$ have a common root, then
 - (a) a is real
 - (b) a = 1/2 + i
 - (c) a = 1/2 i
 - (d) the other root is also common
- 38. The distance between the lines y = 2x + 4and 3y = 6x - 5 is equal to
 - (a) 1

- (c) $\frac{17\sqrt{5}}{15}$ (d) $\frac{17}{\sqrt{3}}$
- 39. The equation $\frac{x^2}{12-k} + \frac{y^2}{8-k} = 1$ represents
 - (a) a hyperbola, if k < 8
 - (b) an ellipse, if k > 8
 - (c) a hyperbola, if 8 < k < 12
 - (d) None of the above
- 40. The series

$$\frac{1}{(n+1)} + \frac{1}{2(n+1)^2} + \frac{1}{3(n+1)^3} + \dots$$

has the same sum as the series

- (a) $\frac{1}{n} \frac{1}{2n^2} + \frac{1}{3n^3} \frac{1}{4n^4} + \dots$
- (b) $\frac{1}{n} + \frac{1}{2n^2} + \frac{1}{3n^3} + \frac{1}{4n^4} + \dots$
- (c) $\frac{1}{n} + \frac{1}{2^2} \cdot \frac{1}{n^2} + \frac{1}{2^3} \cdot \frac{1}{n^3} + \dots$
- (d) None of the above
- 41. The sum of the infinite series

$$\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \frac{8}{9!} + \dots \infty$$
 is

- (b) e^{-1} (c) 2e (d) e^2
- the roots of the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ are equal, then a, b, c are in
 - (a) AP

(b) GP

(c) HP

- (d) None of these
- 43. The probability that a person will hit a target in shooting practice is 0.3. If he shoots 10 times, then the probability of his shooting the target is
 - (a) 1

- (b) $1-(0.7)^{10}$
- (c) $(0.7)^{10}$
- (d) $(0.3)^{10}$

Let A and B be two events such that
$$P(A) = 0.3$$
 and $P(A \cup B) = 0.8$. If A and B are independent events. Then, $P(B)$ is equal to

(a) 5/7

(b) 2/3

- (d) None of these
- 45. The number of distinct real roots of $\sin x \cos x \cos x$

$$\cos x \cos x \sin x$$

$$x \in \left[\frac{-\pi}{4}, \frac{\pi}{4} \right] \text{ is}$$

(a) 0

(b) 2

 $\cos x \sin x \cos x = 0$ in the interval

(c) 1

(d) 3

then the

- 46. If A = 0 a 0,
 - |A|| adj(A)| is
 - (a) a^3

(b) a^6

(c) a^9

(d) a^{27}

- 47. The term independent of x in $\sqrt{\frac{x}{3}} + \sqrt{\frac{3}{2x^2}}$
 - is
 - (a) ${}^{10}C_1$

(b) 5/12

- (d) None of these

- terms
- (a) $\frac{n-1}{2}$ (b) $\frac{n}{n+1}$ (c) $\frac{n+1}{n+2}$ (d) $\frac{(n+1)}{n}$
- 49. The solution of the equation $\cos^2 \theta + \sin \theta + 1 = 0$, lies in the interval

- (c) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ (d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
- 50. log₃ 2, log₆ 2, log₁₂ 2 are in
 - (a) AP

(b) GP

(c) HP

(d) None of these

Answer – Key

value of

1.	b	2.	b	3.	c	4.	b	5.	a	6.	c	7.	c	8.	b	9.	b	10.	b
11.	b	12.	С	13.	b	14.	а	15.	а	16.	b	17.	а	18.	а	19.	d	20.	С
21.	C	22.	С	23.	d	24.	b	25.	d	26.	С	27.	b	28.	а	29.	a/	30.	b
31.	c	32.	b	33.	а	34.	С	35.	С	36.	С	37.	С	38.	С	39.	C (40.	а
41.	b	42.	С	43.	b	44.	а	45.	С	46.	С	47.	d	48.	b	49.	d	50.	С