1.	How many moles of h	elium gas occupy 22.4 L		(d) forces exercise between the model						
2	at 0°C and 1 atm pres	sure?		 (d) forces operative between its molecules are negligible 						
),	(a) 0.11	(b) 1.11	8.	What type of crystal defect is indicated in the						
8	(c) 0.90	(d) 1.0		diagram below?						
2.	The compound which covalent bond	contains both ionic and		Na ⁺ Cl ⁻ Na ⁺ Cl ⁻ Na ⁺ Cl ⁻						
	(a) KCl	(b) KCN	,	Cl Cl Na Na Na Na Na Cl Cl Na Cl Cl Na Cl						
2	(c) CH ₄	(d) H ₂		Cl Na Cl Na Na Na						
3.	The following is endor (a) Decomposition of			(a) Frenkel defect						
	(b) Conversion of gra			(b) Schottky defect						
	(c) Dehydrogenation			(c) Interstitial defect (d) Frenkel and Schottky defects						
	(d) All of the above	of the confidence								
4.	A saturated solution of	Ag_2SO_4 is 2.5×10^{-2} M.	9.	A metal has bcc structure and the edge length						
	The value of its solubi	The state of the s		of its unit cell is 3.04 Å. The volume of the unit cell in cm ³ will be						
	(a) 62.5×10^{-6}	(b) 6.25×10 ⁻⁴		(a) 1.6×10^{-21} cm ³ (b) 2.81×10^{-23} cm ³						
	(c) 15.625×10^{-6}	(d) 3.125×10 ⁻⁶		(c) 6.02×10^{-23} cm ³ (d) 6.6×10^{-24} cm ³						
5.	carbon monoxide	nbustion of carbon and are -393.5 and ively. The enthalpy of	10.	Peptisation denotes (a) digestion of food (b) hydrolysis of proteins						
	formation of carbon m	onoxide per mole is		(c) breaking and dispersion into the colloidal						
	(a) 110.5 kJ	(b) 676.5 kJ		state						
•		(d) -110.5 kJ		(d) precipitation of solid from colloidal						
0.	entropy change will be	heat to melt at 0°C. The	dispersion Plaster of Paris is							
	(a) $1.2 \text{ J K}^{-1} \text{ mol}^{-1}$		11.	(a) $CaSO_4 \cdot 2H_2O$ (b) $CaSO_4 \cdot H_2O$						
	(c) 22.1 JK ⁻¹ mol ⁻¹			(a) CaSO ₄ · ZI ₁₂ O (b) CaSO ₄ · H ₂ O						
7.	An ideal gas can't be li			(c) $CaSO_4 \cdot \frac{1}{2}H_2O$ (d) $CaSO_4 \cdot 4H_2O$						
		ture is always above 0°C	12.	Conc. HNO ₃ reacts with I ₂ to form						
		elatively smaller in size		(a) HI (b) HOI						
	(c) it solidifies before	The state of the s		(c) HIO ₂ (d) HIO ₃						

13.	Coal gas is a mixture of (a) H ₂ O and CO (b) H ₂ , CO and CH ₄		$n = 4$, $l = 3$, $m = -2$, $s = \frac{1}{2}$?							
	(c) H ₂ and CO (d) CH ₄ and CO		(a) 3s (b) 4f							
14.	Stainless steel contains		(c) 5p (d) 6s							
- •	(a) $Fe + Cr + Cu$ (b) $Fe + Cu + Ni$	23.	The energy of an electron in second Bohr orbit							
	(c) $Fe + Cr + Ni$ (d) $Fe + Ni + Cu$		of hydrogen atom is							
15.	The isomers which can be converted into		(a) -5.44×10^{-19} eV (b) -5.44×10^{-19} cal							
	another form by rotation of the molecule		(c) -5.44×10^{-19} kJ (d) -5.44×10^{-19} J							
O	around single bond are	24.	One of the following has greatest electron							
4	(a) geometrical isomers		affinity. Identify it.							
	(b) conformers		(a) O (b) S							
	(c) enantiomers		(c) Se (d) Te							
16	(d) diastereomers	25.	The ONO angle is maximum in							
10.	An organic compound contains 49.3% carbon,		(a) NO_3^- (b) NO_2^-							
	6.84% hydrogen and its vapour density is 73.		(c) NO_2 (d) NO_2^+							
	Molecular formula of the compound is		-							
	(a) $C_3H_5O_2$ (b) $C_4H_{10}O_2$ (c) $C_6H_{10}O_4$ (d) $C_3H_{10}O_2$	26.	The pH value for $\frac{1}{1000}$ N-KOH solution is							
17.	Ozone in stratosphere is depleted by		(a) 3 (b) 10^{-11}							
	(a) CF_2Cl_2 (b) C_7F_{16}		(c) 2 (d) 11							
	(c) $C_6H_6Cl_6$ (d) C_6F_6	27.	The equilibrium constant for a reaction,							
18.	Iodine is formed when KI reacts with a solution		$N_2(g) + O_2(g) \implies 2NO(g)$							
	of		is 4×10^{-4} at 2000 K. In the presence of							
	(a) $CuSO_4$ (b) $(NH_4)_2SO_4$	200	catalyst, the equilibrium is attained 10 times							
10	(c) ZnSO ₄ (d) FeSO ₄	<	faster. The equilibrium constant in presence of							
19.	Select the correct order of the strength of acids given below	160	catalyst at 2000 K is							
			(a) 10×10^{-4} (b) 4×10^{-2}							
	(a) HClO ₃ < HClO ₃ < HClO ₂		(c) 4×10^{-4} (d) 40×10^{-4}							
	(b) HClO ₄ < HClO ₃ < HClO ₂ < HClO (c) HClO < HClO ₂ < HClO ₃ < HClO ₄	28.	Consider the following E° values							
	(d) None of the above		$E_{\rm Fe}^{\circ}$ + $/{\rm Fe}^{2+}$ = + 0.77 V							
20.	Which one of the following statements									
	regarding helium is incorrect?		$E_{\mathrm{Sn}^{2+}/\mathrm{Sn}}^{\circ} = -0.14 \mathrm{V}$							
	(a) It is used to fill gas balloons instead of		Under standard conditions the potential for the							
	hydrogen because it is lighter and		reaction,							
	non-inflammable		$\operatorname{Sn}(s) + 2\operatorname{Fe}^{3+}(aq) \longrightarrow 2\operatorname{Fe}^{2+}(aq) + \operatorname{Sn}^{2+}(aq)$							
	(b) It is used as a cryogenic agent for carrying out experiments at low temperatures		is							
	(c) It is used to produce and sustain powerful		(a) 1.68 V (b) 1.40 V							
	superconducting magnets		(c) 0.91 V (d) 0.63 V							
	(d) It is used in gas-cooled nuclear reactors	29.	The relationship between the values of osmotic							
21.	One would expect proton to have very large		pressure of 0.1 M solutions of $KNO_3(p_1)$ and							
	(a) ionisation potential		$CH_3COOH(p_2)$ is							
	(b) radius		(a) $\frac{p_1}{p_2} = \frac{p_2}{p_2}$ (b) $p_1 > p_2$							
	(c) charge		(a) $\frac{p_1}{p_1 + p_2} = \frac{p_2}{p_1 + p_2}$ (b) $p_1 > p_2$							
	(d) hydration energy		(c) $p_2 > p_1$ (d) $p_1 = p_2$							
22.	What is the correct orbital designation of an	30.	Volume of 0.6 M NaOH required to neutralise							
	electron with the quantum number,		30 cm ³ of 0.4 M HCl is							

- (a) 30 cm³
- (b) 45 cm³
- (c) 20 cm^3
- (d) $50 \, \text{cm}^3$
- 31. For nth order reaction, the half-life period, $t_{1/2}$ is proportional to initial concentration as
- (c) a^{n-1}
- (d) $\frac{1}{c^n}$
- 32. Thermite is a mixture of
 - (a) $Cr_2O_3 + Al_2O_3$
- (b) $Fe_2O_3 + Al$
- (c) $Fe_2O_3 + Al_2O_3$ (d) $Al_2O_3 + 2Cr$
- 33. Of the ions Zn²⁺, Ni²⁺ ad Cr³⁺ (atomic number of Zn = 30, Ni = 28 and Cr = 24)
 - (a) all these are colourless
 - (b) all these are coloured
 - (c) only Ni²⁺ is coloured and Zn²⁺ and Cr³⁺ are colourless
 - (d) only Zn²⁺ is colourless and Ni²⁺ and Cr³⁺ are coloured
- 34. The coordination number of a central metal atom in a complex is determined by
 - (a) the number of ligands around a metal ion bonded by o-bonds
 - (b) the number of ligands around a metal ion bonded by π -bonds
 - (c) the number of ligands around a metal ion bonded by σ and π -bonds both
 - (d) the number of only anionic ligands bonded to the metal ion
- 35. Potassium ferricyanide on ionisation produces
 - (a) 2 ions
- (b) 1 ion
- (c) 3 ions
- (d) 4 ions
- 36. The IUPAC name of

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3--CH--CH_2--C--CH_3} \text{ is} \\ \operatorname{OH} \\ \operatorname{OH} \\ \end{array}$$

- (a) 1,1-dimethyl-1,3-butanediol
- (b) 2-methyl-2,4-pentanediol
- (c) 4-methyl-2,4-pentanediol
- (d) 1,3,3-trimethyl-1,3-propane diol
- 37. The order of decreasing stability of the carbanions is

$$(CH_3)_3\bar{C}(1)$$
, $(CH_3)_2\bar{C}H(2)$, $CH_3\bar{C}H_2(3)$,

 $C_6H_5\bar{C}H_2(4)$

- (a) 1 > 2 > 3 > 4
- (b) 4 > 3 > 2 > 1
- (c) 1 > 2 > 4 > 3
- (d) 4>1>2>3

38. Which set of products is expected on reductive ozonolysis of the following diolefin?

- (a) CH₂CHO; CH₂COCH=CH₂
- (b) CH₂CH==C --CHO; CH₂O
- (c) CH₃CHO; CH₃COCHO; CH₂O
- (d) CH2CHO; CH2COCH2; CH2O
- 39. Which of the following pairs is/are correctly matched?

	Reaction	Product						
I.	RX + AgCN	RNC						
II.	RX + KCN	RCN						
II.	RX + KNO ₂	R-NO						
V.	RX + AgNO ₂	R - O - N = O						

Select the correct answer using the codes given below

- (a) I alone
- (b) I and II
- (c) III and IV
- (d) I, II, III and IV
- 40. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives
 - (a) benzyl alcohol and sodium formate
 - (b) sodium benzoate and methyl alcohol
 - (c) sodium benzoate and sodium formate
- (d) benzyl alcohol and methyl alcohol 41. Which of the following react with NaOH to produce an acid and an alcohol?
 - (a) HCHO
- (b) CH2COOH
- (c) CH₂CH₂COOH
- (d) C₆H₅COOH
- 42. Which of the following has the maximum acidic strength?
 - (a) o-nitrobenzoic acid
 - (b) m-nitrobenzoic acid
 - (c) p-nitrobenzoic acid
 - (d) p-nitrophenol
- 43. Fenton's reagent is
 - (a) Zn + HCl
- (b) Sn +HCl
- (c) $FeSO_4 + H_2O_2$
- (d) None of these
- 44. The energy stored in the cells of a living body is in the form of
 - (a) fats
- (b) glucose
- (c) ATP
- (d) proteins

45. Saccharin is a/an 48. In chlorobenzene solution, the basic strength of (a) aliphatic hydrocarbon amines increases in the order (b) polynuclear compound (a) $(C_2H_5)_3N < (C_2H_5)_2NH < C_2H_5NH_2$ (c) sweetening agent (b) $C_2H_5NH_2 < (C_2H_5)_2NH < (C_2H_5)_3N$ (d) sugar (c) $(C_2H_5)_2NH < C_2H_5NH_2 < (C_2H_5)_2N$ 46. The nucleic acid the purine base having two (d) $(C_2H_5)_3N < C_2H_5NH_2 < (C_2H_5)_2NH$ possible binding sites is 49. Dimethyl terephthalate and ethylene glycol (a) thymine react to form (b) cytosine (c) guanine (d) adenine (a) nylon-6 (b) nylon-66 47. On reduction secondary amine is given by (c) dacron (d) neoprene 50. Gasoline is a mixture of (a) nitroethane (b) methylcyanide

> (a) C_6 — C_{11} alkanes (b) C_3 — C_5 alkanes (c) C₇—C₉ alkanes (d) C₁₅—C₂₀ alkanes

- - (c) methylisocyanide (d) nitrobenzene

Answer - Key

1.	d	2.	b	3.	d	4.	a	5.	d	6.	c	7.	d	8.	b	9.	b	10.	C
11.	С	12.	d	13.	b	14.	С	15.	b	16.	С	17.	а	18.	а	19.	С	20.	С
21.	d	22.	b	23.	d	24.	b	25.	d	26.	d	27.	c S	28.	c	29.	b	30.	С
31.	a	32.	b	33.	d	34.	а	35.	d	36.	b	37.	b	38.	С	39.	b	40.	а
41.	a	42.	а	43.	С	44.	С	45.	С	46.	d	47.	С	48.	b	49.	С	50.	С