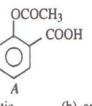
(d)
$$2K[Ag(CN)_2] + Zn \longrightarrow$$

 $2Ag + K_2[Zn(CN)_4]$

(d) RT/P


3. Number of P-O bonds in P4O10 is: (b) 16 (c) 15 (d) 6 (a) 17 KO₂ is used in space and submarines 4.

(c) P/RT

5.

- because it: (a) absorbs CO2 and increases O2 concentration (b) absorbs moisture
- (c) absorbs CO2 (d) produces ozone Which of the following ions has the maximum magnetic moment?
- (a) Mn^{2+} (b) Fe²⁺ (d) Cr²⁺ (c) Ti²⁺
- 6. Acetylene does not react with: (a) Na
- (b) ammonical AgNO₃
- (d) NaOH 7. Compound A given below is:

(c) HCl

- (b) antibiotic (a) antiseptic (c) analgesic (d) pesticide
- For the following cell with hydrogen electrodes at two different pressures p_1 and p_2

$$p_1$$
 1M p_2

Pt (H₂) | H⁺(aq.) | Pt (H₂)

- emf is given by:
- (a) $\frac{RT}{F}\log_e \frac{p_1}{p_2}$ (b) $\frac{RT}{2F}\log_e \frac{p_1}{p_2}$

- (a) Cl2CHCHO (b) ClCH2COOH (d) CICH2CHO (c) CH₃COCl
- On heating benzyl amine with chloroform and ethanolic KOH, product obtained is:
- (a) benzyl alcohol (b) benzaldehyde (c) benzonitrile (d) benzyl isocyanide
- Which of the following reaction is possible at anode? (a) $F_2 + 2e^- \longrightarrow 2F^-$
- (b) $2H^+ + \frac{1}{2}O_2 + 2e^- \longrightarrow H_2O$ (c) $2Cr_2^{3+} + 7H_2O \longrightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$
- (d) $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$

10.

12.	Which of the following concentration factor is affected by change in temperature? (a) Molarity (b) Molality (c) Mol fraction (d) Weight fraction Cyanide process is used for the extraction of:	20.	In an organic compound of molar ma $108 \text{ g mol}^{-1} \text{ C}$, H and N atoms are prese in 9:1:3.5 by weight. Molecular formu can be: (a) $C_6H_8N_2$ (b) $C_7H_{10}N$ (c) $C_5H_6N_3$ (d) $C_4H_{18}N_3$
14.	 (a) barium (b) silver (c) boron (d) zinc Following reaction (CH₃)₃CBr + H₂O → (CH₃)₃COH + HBr is an example of : (a) elimination reaction (b) free radical substitution (c) nucleophilic substitution 	21.	Solubility of Ca(OH) ₂ is S mol litre ⁻¹ . The solubility product (K_{sp}) under the same condition is: (a) $4S^3$ (b) $3S^4$ (c) $4S^2$ (d) S^3 Heat required to raise the temperature of
15.	(d) electrophilic substitution A metal M forms water soluble MSO ₄ and inert MO. MO in aqueous solution forms insoluble M(OH) ₂ soluble in NaOH. Metal M is: (a) Be (b) Mg (c) Ca (d) Si	23.	mol of a substance by 1° is called: (a) specific heat (b) molar heat capac (c) water equivalent (d) specific gravity β-particle is emitted in a radioactive reaction when: (a) a proton changes to neutron
16.	Half life of a substance A following first order kinetics is 5 days. Starting with 100 g of A, amount left after 15 days is: (a) 25 g (b) 50 g (c) 12.5 g(d) 6.25 g	24.	 (b) a neutron changes to proton (c) a neutron changes to electron (d) an electron changes to neutron In a mixture of A and B, components sho
17.	The most stable ion is : (a) $[Fe(OH)_5]^{3-}$ (b) $[FeCl_6]^{3-}$ (c) $[Fe(CN)_6]^{3-}$ (d) $[Fe(H_2O)_6]^{3+}$		negative deviation when: (a) A—B interaction is stronger than A—and B—B interaction (b) A—B interaction is weaker than A—A and
18.	A substance forms zwitter ion. It can have functional groups: (a) —NH ₂ , —COOH(b) —NH ₂ , —SO ₃ H (c) both (d) none of these	25.	B—B interaction (c) $\Delta V_{\text{mix}} > 0$, $\Delta S_{\text{mix}} > 0$ (d) $\Delta V_{\text{mix}} = 0$, $\Delta S_{\text{mix}} > 0$ Refining of impure copper with zinc impure
19.	If Fe ³⁺ and Cr ³⁺ both are present in group III of qualitative analysis, then distinction can be made by: (a) addition of NH ₄ OH in presence of NH ₄ Cl when only Fe(OH) ₃ is precipitated (b) addition of NH ₄ OH in presence of NH ₄ Cl when Cr(OH) ₃ and Fe(OH) ₃ both		is to be done by electrolysis using electromas: Cathode Anode (a) pure copper pure zinc (b) pure zinc pure copper (c) pure copper impure copper (d) pure zinc impure zinc
	are precipitated and on adding Br ₂ water and NaOH, Cr(OH) ₃ dissolves (c) precipitate of Cr(OH) ₃ and Fe(OH) ₃ as obtained in (b) are treated with conc. HCl when only Fe(OH) ₃ dissolves (d) (b) and (c) the correct.	26.	Aluminium is extracted by the electrolys of: (a) alumina (b) bauxite (c) molten cryolite (d) alumina mixed with molten cryolite

MnO4 is a good oxidising agent in different medium changing to

$$MnO_4^- \longrightarrow Mn^{2+}$$
 $\longrightarrow MnO_4^{2-}$
 $\longrightarrow MnO_2$
 $\longrightarrow Mn_2O_3$

Changes in oxidation number respectively are:

- (a) 1, 3, 4, 5 (b) 5, 4, 3, 2

- (c) 5, 1, 3, 4 (d) 2, 6, 4, 3
- 42. For the reaction : $H_2 + I_2 \longrightarrow 2HI$, the differential rate law is:

(a)
$$-\frac{d [H_2]}{dt} = -\frac{d [I_2]}{dt} = 2 \frac{d [HI]}{dt}$$

(b)
$$-2 \frac{d [H_2]}{dt} = -2 \frac{d [I_2]}{dt} = \frac{d [HI]}{dt}$$

(c)
$$-\frac{d [H_2]}{dt} = -\frac{d [I_2]}{dt} = \frac{d [HI]}{dt}$$

(d)
$$-\frac{d [H_2]}{2dt} = -\frac{d [I_2]}{2dt} = \frac{d [HI]}{dt}$$

- Number of atoms in 560 g of Fe (atomic 43. mass 56 g mol⁻¹) is:
 - (a) is twice that of 70 g N
 - (b) is half that of 20 g H
 - (c) both are correct
 - (d) none is correct
- Geometrical isomerism is not shown by: 44.
 - (a) 1, 1-dichloro-1-pentene
 - (b) 1, 2-dichloro-1-pentene
 - (c) 1, 3-dichloro-2-pentene
 - (d) 1, 4-dichloro-2-pentene
- 45. Number of atoms in the unit cell of Na (BCC type crystal) and Mg (FCC type crystal) are respectively:
 - (a) 4, 4 (b) 4, 2 (c) 2, 4 (d) 1, 1
- 46. Which of the following compounds has incorrect IUPAC nomenclature ?

- (b) CH3CHCH5CHO CH₃ 3-methyl butanal
- (c) CH₃CHCCH₂CH₂ CH₃

2-methyl-3-pentanone

End product of the following reaction is: 47.

$$CH_3CH_2COOH \xrightarrow{Cl_2} red P$$

alcoholic KOH

- (a) CH3CHCOOH (b) CH₂CH₂COOH TIM
- (c) CH2=CHCOOH (d) CH2CHCOOH
- 48. For the following reaction in gaseous phase

$$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$

 K_c/K_p is:

- (a) $(RT)^{1/2}$
- (b) $(RT)^{-1/2}$
- (c) (RT)
- (d) $(RT)^{-1}$
- 49. Energy of H-atom in the ground state is -13.6 eV, hence energy in the second excited state is:
 - (a) -6.8 eV
- (b) $-3.4 \, \text{eV}$
- (c) 1.51 eV
- (d) -4.53 eV
- 50. A square planar complex is formed by hybridisation of the following atomic orbitals:
 - (a) s, p_x, p_y, p_z
 - (b) s, p_x, p_y, p_7, d
 - (c) d, s, p_x , p_y
 - (d) s, p_x, p_y, p_z, d, d

51. Type of isomerism shown by

[Cr(NH₃)₅NO₂]Cl₂ is:

- (a) optical
- (b) ionisation
- (c) geometrical
- (d) linkage
- 52. One of the following equilibria is not affected by change in volume of the flask:
 - (a) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$
 - (b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - (c) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - (d) $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$
- 53. Uncertainty in position of a particle of 25 g in space is 10^{-5} m. Hence uncertainty in velocity (ms⁻¹) is (Planck's constant $h = 6.6 \times 10^{-34}$ Js):
 - (a) 2.1×10^{-28}
- (b) 2.1×10^{-34}
- (c) 0.5×10^{-34}
 - (d) 5.0×10^{-24}
- 54. Consider the following reactions at 1100°C

(I)
$$2C + O_2 \longrightarrow 2CO$$
,

$$\Delta G^{\circ} = -460 \text{ kJ mol}^{-1}$$

(II)
$$2Zn + O_2 \longrightarrow 2ZnO$$
,

$$\Delta G^{\circ} = -360 \text{ kJ mol}^{-1}$$

Based on these, select correct alternate:

- (a) zinc can be oxidised by CO
- (b) zinc oxide can be reduced by carbon
- (c) both are correct
- (d) none is correct
- 55. A reaction is non-spontaneous at the freezing point of water but is spontaneous at the boiling point of water then:

$$\begin{array}{cccc}
\Delta H & \Delta S \\
\text{(a) +ve} & +ve \\
\text{(b) -ve} & -ve \\
\text{(c) -ve} & +ve \\
\text{(d) +ve} & -ve
\end{array}$$

Answer – Key

1. d	2. c	3. b	4 . a	5. a	6. d	7. c	8. b	9. a	10. d
11. d	12. a	13. b	14. c	15. a	16. c	17. c	18. c	19. b	20. a
21. a	22. b	23. b	24. a	25. с	26. d	27. b	28. b	29. d	30. b
31. c	32. c	33. a	34. b	35. a	36. a	37. d	38. b	39. c	40. d
41. c	42. b	43. c	44. a	45. c	46. d	47. c	48. a	49. c	50. c
51. h	52. c	53. a	54. h	55. a					