(d) $$2K[Ag(CN)_2] + Zn \longrightarrow$$ $2Ag + K_2[Zn(CN)_4]$ (d) RT/P 3. Number of P-O bonds in P4O10 is: (b) 16 (c) 15 (d) 6 (a) 17 KO₂ is used in space and submarines 4. (c) P/RT 5. - because it: (a) absorbs CO2 and increases O2 concentration (b) absorbs moisture - (c) absorbs CO2 (d) produces ozone Which of the following ions has the maximum magnetic moment? - (a) Mn^{2+} (b) Fe²⁺ (d) Cr²⁺ (c) Ti²⁺ - 6. Acetylene does not react with: (a) Na - (b) ammonical AgNO₃ - (d) NaOH 7. Compound A given below is: (c) HCl - (b) antibiotic (a) antiseptic (c) analgesic (d) pesticide - For the following cell with hydrogen electrodes at two different pressures p_1 and p_2 $$p_1$$ 1M p_2 Pt (H₂) | H⁺(aq.) | Pt (H₂) - emf is given by: - (a) $\frac{RT}{F}\log_e \frac{p_1}{p_2}$ (b) $\frac{RT}{2F}\log_e \frac{p_1}{p_2}$ - (a) Cl2CHCHO (b) ClCH2COOH (d) CICH2CHO (c) CH₃COCl - On heating benzyl amine with chloroform and ethanolic KOH, product obtained is: - (a) benzyl alcohol (b) benzaldehyde (c) benzonitrile (d) benzyl isocyanide - Which of the following reaction is possible at anode? (a) $F_2 + 2e^- \longrightarrow 2F^-$ - (b) $2H^+ + \frac{1}{2}O_2 + 2e^- \longrightarrow H_2O$ (c) $2Cr_2^{3+} + 7H_2O \longrightarrow Cr_2O_7^{2-} + 14H^+ + 6e^-$ - (d) $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$ 10. | 12. | Which of the following concentration factor is affected by change in temperature? (a) Molarity (b) Molality (c) Mol fraction (d) Weight fraction Cyanide process is used for the extraction of: | 20. | In an organic compound of molar ma $108 \text{ g mol}^{-1} \text{ C}$, H and N atoms are prese in 9:1:3.5 by weight. Molecular formu can be: (a) $C_6H_8N_2$ (b) $C_7H_{10}N$ (c) $C_5H_6N_3$ (d) $C_4H_{18}N_3$ | |-----|---|-----|---| | 14. | (a) barium (b) silver (c) boron (d) zinc Following reaction (CH₃)₃CBr + H₂O → (CH₃)₃COH + HBr is an example of : (a) elimination reaction (b) free radical substitution (c) nucleophilic substitution | 21. | Solubility of Ca(OH) ₂ is S mol litre ⁻¹ . The solubility product (K_{sp}) under the same condition is: (a) $4S^3$ (b) $3S^4$ (c) $4S^2$ (d) S^3 Heat required to raise the temperature of | | 15. | (d) electrophilic substitution A metal M forms water soluble MSO ₄ and inert MO. MO in aqueous solution forms insoluble M(OH) ₂ soluble in NaOH. Metal M is: (a) Be (b) Mg (c) Ca (d) Si | 23. | mol of a substance by 1° is called: (a) specific heat (b) molar heat capac (c) water equivalent (d) specific gravity β-particle is emitted in a radioactive reaction when: (a) a proton changes to neutron | | 16. | Half life of a substance A following first order kinetics is 5 days. Starting with 100 g of A, amount left after 15 days is: (a) 25 g (b) 50 g (c) 12.5 g(d) 6.25 g | 24. | (b) a neutron changes to proton (c) a neutron changes to electron (d) an electron changes to neutron In a mixture of A and B, components sho | | 17. | The most stable ion is :
(a) $[Fe(OH)_5]^{3-}$ (b) $[FeCl_6]^{3-}$
(c) $[Fe(CN)_6]^{3-}$ (d) $[Fe(H_2O)_6]^{3+}$ | | negative deviation when: (a) A—B interaction is stronger than A—and B—B interaction (b) A—B interaction is weaker than A—A and | | 18. | A substance forms zwitter ion. It can have functional groups: (a) —NH ₂ , —COOH(b) —NH ₂ , —SO ₃ H (c) both (d) none of these | 25. | B—B interaction
(c) $\Delta V_{\text{mix}} > 0$, $\Delta S_{\text{mix}} > 0$
(d) $\Delta V_{\text{mix}} = 0$, $\Delta S_{\text{mix}} > 0$
Refining of impure copper with zinc impure | | 19. | If Fe ³⁺ and Cr ³⁺ both are present in group III of qualitative analysis, then distinction can be made by: (a) addition of NH ₄ OH in presence of NH ₄ Cl when only Fe(OH) ₃ is precipitated (b) addition of NH ₄ OH in presence of NH ₄ Cl when Cr(OH) ₃ and Fe(OH) ₃ both | | is to be done by electrolysis using electromas: Cathode Anode (a) pure copper pure zinc (b) pure zinc pure copper (c) pure copper impure copper (d) pure zinc impure zinc | | | are precipitated and on adding Br ₂ water and NaOH, Cr(OH) ₃ dissolves (c) precipitate of Cr(OH) ₃ and Fe(OH) ₃ as obtained in (b) are treated with conc. HCl when only Fe(OH) ₃ dissolves (d) (b) and (c) the correct. | 26. | Aluminium is extracted by the electrolys of: (a) alumina (b) bauxite (c) molten cryolite (d) alumina mixed with molten cryolite | MnO4 is a good oxidising agent in different medium changing to $$MnO_4^- \longrightarrow Mn^{2+}$$ $\longrightarrow MnO_4^{2-}$ $\longrightarrow MnO_2$ $\longrightarrow Mn_2O_3$ Changes in oxidation number respectively are: - (a) 1, 3, 4, 5 (b) 5, 4, 3, 2 - (c) 5, 1, 3, 4 (d) 2, 6, 4, 3 - 42. For the reaction : $H_2 + I_2 \longrightarrow 2HI$, the differential rate law is: (a) $$-\frac{d [H_2]}{dt} = -\frac{d [I_2]}{dt} = 2 \frac{d [HI]}{dt}$$ (b) $$-2 \frac{d [H_2]}{dt} = -2 \frac{d [I_2]}{dt} = \frac{d [HI]}{dt}$$ (c) $$-\frac{d [H_2]}{dt} = -\frac{d [I_2]}{dt} = \frac{d [HI]}{dt}$$ (d) $$-\frac{d [H_2]}{2dt} = -\frac{d [I_2]}{2dt} = \frac{d [HI]}{dt}$$ - Number of atoms in 560 g of Fe (atomic 43. mass 56 g mol⁻¹) is: - (a) is twice that of 70 g N - (b) is half that of 20 g H - (c) both are correct - (d) none is correct - Geometrical isomerism is not shown by: 44. - (a) 1, 1-dichloro-1-pentene - (b) 1, 2-dichloro-1-pentene - (c) 1, 3-dichloro-2-pentene - (d) 1, 4-dichloro-2-pentene - 45. Number of atoms in the unit cell of Na (BCC type crystal) and Mg (FCC type crystal) are respectively: - (a) 4, 4 (b) 4, 2 (c) 2, 4 (d) 1, 1 - 46. Which of the following compounds has incorrect IUPAC nomenclature ? - (b) CH3CHCH5CHO CH₃ 3-methyl butanal - (c) CH₃CHCCH₂CH₂ CH₃ 2-methyl-3-pentanone End product of the following reaction is: 47. $$CH_3CH_2COOH \xrightarrow{Cl_2} red P$$ ## alcoholic KOH - (a) CH3CHCOOH (b) CH₂CH₂COOH TIM - (c) CH2=CHCOOH (d) CH2CHCOOH - 48. For the following reaction in gaseous phase $$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$ K_c/K_p is: - (a) $(RT)^{1/2}$ - (b) $(RT)^{-1/2}$ - (c) (RT) - (d) $(RT)^{-1}$ - 49. Energy of H-atom in the ground state is -13.6 eV, hence energy in the second excited state is: - (a) -6.8 eV - (b) $-3.4 \, \text{eV}$ - (c) 1.51 eV - (d) -4.53 eV - 50. A square planar complex is formed by hybridisation of the following atomic orbitals: - (a) s, p_x, p_y, p_z - (b) s, p_x, p_y, p_7, d - (c) d, s, p_x , p_y - (d) s, p_x, p_y, p_z, d, d 51. Type of isomerism shown by [Cr(NH₃)₅NO₂]Cl₂ is: - (a) optical - (b) ionisation - (c) geometrical - (d) linkage - 52. One of the following equilibria is not affected by change in volume of the flask: - (a) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ - (b) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ - (c) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ - (d) $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ - 53. Uncertainty in position of a particle of 25 g in space is 10^{-5} m. Hence uncertainty in velocity (ms⁻¹) is (Planck's constant $h = 6.6 \times 10^{-34}$ Js): - (a) 2.1×10^{-28} - (b) 2.1×10^{-34} - (c) 0.5×10^{-34} - (d) 5.0×10^{-24} - 54. Consider the following reactions at 1100°C (I) $$2C + O_2 \longrightarrow 2CO$$, $$\Delta G^{\circ} = -460 \text{ kJ mol}^{-1}$$ (II) $$2Zn + O_2 \longrightarrow 2ZnO$$, $$\Delta G^{\circ} = -360 \text{ kJ mol}^{-1}$$ Based on these, select correct alternate: - (a) zinc can be oxidised by CO - (b) zinc oxide can be reduced by carbon - (c) both are correct - (d) none is correct - 55. A reaction is non-spontaneous at the freezing point of water but is spontaneous at the boiling point of water then: $$\begin{array}{cccc} \Delta H & \Delta S \\ \text{(a) +ve} & +ve \\ \text{(b) -ve} & -ve \\ \text{(c) -ve} & +ve \\ \text{(d) +ve} & -ve \end{array}$$ ## Answer – Key | 1. d | 2. c | 3. b | 4 . a | 5. a | 6. d | 7. c | 8. b | 9. a | 10. d | |--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | 11. d | 12. a | 13. b | 14. c | 15. a | 16. c | 17. c | 18. c | 19. b | 20. a | | 21. a | 22. b | 23. b | 24. a | 25. с | 26. d | 27. b | 28. b | 29. d | 30. b | | 31. c | 32. c | 33. a | 34. b | 35. a | 36. a | 37. d | 38. b | 39. c | 40. d | | 41. c | 42. b | 43. c | 44. a | 45. c | 46. d | 47. c | 48. a | 49. c | 50. c | | 51. h | 52. c | 53. a | 54. h | 55. a | | | | | |