$R - C \equiv N + 4(H) \xrightarrow{X} RCH_2NH_2$

X can be (a) LiAlH₄ (b) H2SO4

(c) Ni (d) 2KBr

At a given temperature the equilibrium constant for the reaction of $PCl_5 \longrightarrow PCl_3 + Cl_2$ is 2.4×10^{-3} . At the

same temperature, the equilibrium constant for the reaction $PCl_3(g) + Cl_2(g) \Longrightarrow PCl_5(g)$ is

(a) 2.4×10^{-3} (b) -2.4×10^{-3} (d) 4.8×10^{-2} (c) 4.2×10^2

Which of the following is called polyamide? (a) Terylene (b) Rayon (d) Orlon (c) Nylon

The number of electrons in the valence shell of sulphur in SF6 is (b) 10 (a) 12 (d) 11 (c) 8

The minimum energy required for the reacting molecules to undergo reaction is (a) potential energy (b) kinetic energy (c) thermal energy (d) activation energy Which of the following is correct for the reaction?

 $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ (a) $K_n = K_c$ (b) $K_p < K_c$ (c) $K_n > K_c$ (d) Pressure is required to predict the

correlation The rate constant of a first order reaction is 6.9×10^{-3} s⁻¹. How much time will it take to reduce the initial concentration to its 1/8th

(b) 200 s

(c) 300 s (d) 400 s Which has the minimum freezing point? (a) One molal NaCl aqueous solution (b) One molal CaCl2 aqueous solution (c) One molal KCl aqueous solution (d) One molal urea aqueous solution

value?

(a) 100 s

9. Among the following, the most acidic is (a) CH₃COOH (b) ClCH2COOH

(c) Cl₂CHCOOH (d) Cl₂CHCH₂COOH

10. For a Bohr atom angular momentum M of the electron is: (n = 0, 1, 2,)

11. Which of the following combination will form an electrovalent bond?

(a) P and Cl (b) NH₃ and BF₃ (c) H and Ca (d) H and S

12. How many moles of Al₂(SO₄)₃ would be in 50 g of the substance? (a) 0.083 mol (b) 0.952 mol (d) 0.140 mol (c) 0.481 mol

13. The IUPAC name of the compound CH3CONHBr is TIM (a) 1-bromoacetamide (b) ethanoylbromide

(c) N-bromoethanamide (d) none of the above 14. Which of the following is a condensation polymer?

(a)
$$-NH-C-(CH_2)_5$$

(b) Rubber

(c) Polyvinyl chloride

(d) Polyethylene 15. The solubility of CaF2 in pure water is 2.3×10^{-4} mol dm⁻³. Its solubility product will

be (a) 4.6×10^{-4} (b) 4.6×10^{-8}

(c) 6.9×10^{-12} (d) 4.9×10^{-11} 16. Copper sulphate solution, when added to an

excess of ammonium hydroxide, forms a complex compound due to (b) $[Cu(NH_3)_4]^{2+}$ (a) $[Cu(NH_3)_2]^{2+}$ (c) $[Cu(NH_3)_6]^{2+}$ (d) Cu^{2+}

- 17. If a solution containing 0.072 g atom of sulphur in 100 g of a solvent ($k_f = 7.0$) gave a freezing point depression of 0.84°C, the molecular formula of sulphur in the solutions is
 - (a) S_6

(b) S₇

(c) S₈

- (d) S₉
- **18.** Which of the following is a dynamic isomerism?
 - (a) Metamerism
 - (b) Geometrical isomerism
 - (c) Tautomerism
 - (d) Co-ordinate isomerism
- When K₂Cr₂O₇ is converted into K₂CrO₄, the change in oxidation number of chromium is
 - (a) 0

(b) 5

(c) 7

- (d) 9
- 20. Which of the following will be the most effective in the coagulation of Fe(OH)₃ Sol?
 - (a) KCN

(b) BaCl₂

(c) NaCl

- (d) $Mg_3(PO_4)_2$
- **21.** For *d*-block elements the first ionisation potential is of the order
 - (a) Zn > Fe > Cu > Cr
 - (b) Sc = Ti < V = Cr
 - (c) Zn < Cu < Ni < Co
 - (d) V > Cr > Mn > Fe

- (a) effect of solvent
- (b) inductive effect of Me
- (c) shape of Me₂NH
- (d) shape of Me₃N
- 23. In the reaction

X is

- (a) SiC
- (b) H₂SO₄
- (c) KMnO₄
- (d) Fe/HCl
- 24. In Grignard reagent the carbon-magnesium bond is
 - (a) electrovalent
- (b) covalent
- (c) dative
- (d) hydrogen bonding
- **25.** The radius of hydrogen atom in the ground state is 0.53 Å. The radius of Li²⁺ ion (atomic number = 3) in a similar state is

- (a) 0.176 Å
- (b) 0.30 Å
- (c) 0.53 Å
- (d) 1.23 Å
- 26. Tyndall effect shown by colloids is due to
 - (a) scattering of light by the particles
 - (b) movements of particles
 - (c) reflection of light by the particles
 - (d) coagulation of particles
- 27. Iodine is a
 - (a) electrovalent solid
 - (b) atomic solid
 - (c) molecular solid
 - (d) covalent solid
- 28. Fe²⁺ ion is distinguished from Fe³⁺ ion by
 - (a) BaCl₂

(b) KCN

(c) NaNO3

- (d) NH₄SCN
- 29. Lattice energy of a solid increases if
 - (a) size of ions is small
 - (b) charges of ions are small
 - (c) ions are neutral
 - (d) none of the above
- **30.** Which of the following will not give a positive iodoform test?
 - (a) CH₃CH₂CHOHCH₃
 - (b) CH₃CH₂CH₂COCH₃
 - (c) CH3CH2COCH2CH3
 - (d) CH3COC6H5
- The reason for the loss of optical activity a lactic acid when —OH group is changed by H in that
 - (a) chiral centre of the molecule is destroyed
 - (b) molecules acquires asymmetry
 - (c) due to change in configuration
 - (d) structural changes occurs
- **32.** To distinguish between salicylic acid are phenol one can use
 - (a) NaHCO3 solution
 - (b) 5% NaOH solution
 - (c) neutral FeCl₃
 - (d) bromine water
- 33. C—H bond energy is about 101 kcal/mol for methane, ethane and other alkanes but is on 77 kcal/mol for C—H bond of CH₃ in toluent This is because
 - (a) of inductive effect due to -CH3 in tolue
 - (b) of the presence of benzene ring in tolue
 - (c) of resonance among the structures benzyl radical in toluene
 - (d) aromaticity of toluene

34. Which of the following ions can be replaced by	
H ⁺ ions when H ₂ gas is bubbled through the	45. In CsCl type structure the co-ordination of Cs ⁺ and Cl ⁻ are
solutions containing these ions?	(a) 6, 6 (b) 6, 8 (c) 8, 8 (d) 8, 6
(a) Li^+ (b) Ba^{2+} (c) Cu^{2+} (d) Be^{2+}	46. Hess's law is used to calculate:
35. Alum is added to muddy water because	(a) enthalpy of reaction
(a) it acts as disinfectant	(b) entropy of reaction
(b) it results in coagulation of clay and sand	(c) work done in reaction
(c) clay is soluble in alum, hence removes it(d) it makes water alkaline which is good for	(d) all of the above
health	47. Which of the following is not a Lewis base?
36. NH ₃ gas is dried over	(a) NH ₃ (b) H ₂ O (c) AlCl ₃ (d) None of these
(a) CaO (b) HNO_3 (c) P_2O_5 (d) $CuSO_4$	48. Active charcoal is a good catalyst because
37. Which one of the following is not correct for an	(a) made up of carbon atoms
ideal solution ?	(b) is very reactive
(a) It must obey Raoult's law	(c) has more adsorption power(d) has inert nature toward reagent
(b) $\Delta H = 0$ (c) $\Delta U = 0$	49. H ₂ cannot be displaced by
(d) $\Delta H = \Delta V \neq 0$	(a) Li^+ (b) Sr^{2+}
Borax bead test of Cr (chromium) is	(a) LI (b) SI (c) Al^{3+} (d) Ag^{+}
(a) green (b) blue	
(c) violet (d) brown	50. Which of the following is amphoteric?
39. A catalyst	(a) V_2O_3 (b) CuO
(a) lowers the activation energy (b) changes the rate constant	(c) V_2O_5 (d) NiO 51. The emf of the cell, $(E_{Z_1}^{2+}/Z_n) = -0.76 \text{ V}$
(c) changes the product	
(d) itself destroys in the reaction	Zn <mark>/ Zn²⁺ (1M) Cu²⁺ (</mark> 1M) Cu
Which of the following is cross-linked	$(E_{\text{Cu}^{2+}/\text{Cu}}^{2+} = + 0.34 \text{ V})$ will be
polymer ? (a) Teflon (b) Orlon	(a) $+1.10 \text{ V}$ (b) -1.10 V
(c) Nylon (d) Bakelite	(c) $+0.42 \text{ V}$ (d) -0.42 V
41. In the reaction sequence	52. Which of the following is correct number of
$CH_3CH = CH_2 \xrightarrow{(i) O_3} Products$	carbon atom present as the constituent of
The state of the s	kerosene oil ?
Products will be (a) CH ₃ COCH ₃	(a) C_{10} — C_{16} (b) C_4 — C_6 (c) C_8 — C_{16} (d) C_{12} — C_{18}
(b) CH ₃ COCH ₂ OH	(c) $C_0 - C_{16}$ (d) $C_{12} - C_{18}$
	11.1 11.1
(c) CH ₃ COOH + HCOOH	53. Water possesses a high dielectric constant,
(c) CH ₃ COOH + HCOOH (d) CH ₃ CHO + HCHO	 Water possesses a high dielectric constant, therefore
(c) CH ₃ COOH + HCOOH (d) CH ₃ CHO + HCHO The conditions for aromaticity is	53. Water possesses a high dielectric constant, therefore(a) it always contains ions(b) it is a universal solvent
(c) CH ₃ COOH + HCOOH (d) CH ₃ CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity
(c) CH ₃ COOH + HCOOH (d) CH ₃ CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO(g) and H₂O(g) are
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? (a) Branching of chain 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO (g) and H₂O (g) are -393.5, -110.5 and -241.8 kJ/mol
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? (a) Branching of chain (b) Absence of double and triple bond (c) Non-cyclic alkanes 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO(g) and H₂O(g) are
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? (a) Branching of chain (b) Absence of double and triple bond (c) Non-cyclic alkanes (d) None of the above 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO (g) and H₂O (g) are -393.5, -110.5 and -241.8 kJ/mol respectively. The standard enthalpy change (in kJ) for the reaction
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? (a) Branching of chain (b) Absence of double and triple bond (c) Non-cyclic alkanes (d) None of the above Chlorobenzene gives aniline with 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO (g) and H₂O (g) are -393.5, -110.5 and -241.8 kJ/mol respectively. The standard enthalpy change (in kJ) for the reaction CO₂(g) + H₂(g) → CO (g) + H₂O (g) is
 (c) CH₃COOH + HCOOH (d) CH₃CHO + HCHO The conditions for aromaticity is (a) molecule must have clouds of delocalised π-electrons (b) molecule must contain (4n + 2) π-electrons (c) both (a) and (b) (d) none of the above Which of the following increases the octane number? (a) Branching of chain (b) Absence of double and triple bond (c) Non-cyclic alkanes (d) None of the above 	 53. Water possesses a high dielectric constant, therefore (a) it always contains ions (b) it is a universal solvent (c) can dissolve covalent compounds (d) can conduct electricity 54. Aldehydes can be oxidised by (a) Tollen's reagent (b) Fehling solution (c) Benedict solution (d) All of these 55. The ΔH°_f for CO₂(g), CO (g) and H₂O (g) are -393.5, -110.5 and -241.8 kJ/mol respectively. The standard enthalpy change (in kJ) for the reaction

Answer – Key

7. c 8. b

48. c

9. c

49. d

10. d

50. b

11. c	12. d	13. c	14. a	15. d 25. a 35. b	16. b	17. a	18 .IVIc	19 . a	20. d
21. a	22. a	23. d	24. b	25. a	26. a	27. c	28. d	29. a	30. c
31. a	32. a	3 3. c	34. c	3 5. b	3 6. a	37. d	38. a	39. a	40. d

46. a

45. c

55. b

5. d **6**. b

3. c

43. a

53. b

41. d

51. a

42. c

52. a

4. a

44. a

54. d