NOTE : DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2012

Question Booklet CHEMISTRY

Roll No.

Series A 216645

Time Allowed: 1.30 Hours

Max. Marks: 75

INSTRUCTIONS:

1. Use only BLACK or BLUE Ball Pen.

(Enter your Roll Number in the above space)

- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT - MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

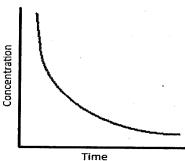
- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.

SEAL

.10012

CHEM

1.	Avog	gadro No. $(6.023 \times 10^{+23})$ of Carbon atoms are present in : 12 grams of $^{12}\text{CO}_2$ (2) 22.4 lit $^{12}\text{CO}_2$ in room temperature
	(3)	44 grams of $^{12}CO_2$ (4) 12 moles of $^{12}CO_2$
2.	The (1)	volume of 0.1 M Ca(OH) ₂ required to neutralize 10 ml of 0.1 N HCl: 10 ml (2) 20 ml (3) 5 ml (4) 15 ml
3.	(1)	ch of the following statement is correct? The equivalent mass of KMnO ₄ in alkaline medium is molar mass divided by five. The equivalent mass of KMnO ₄ in strongly alkaline medium is molar mass
	(2) (3)	divided by three. The equivalent mass of KMnO ₄ in neutral medium is molar mass divided by three.
	(4)	The equivalent mass of KMnO ₄ in weakly acidic medium is molar mass divided by three.
4.	Isot	ones have:
	(1)	Same neutron number but different proton number
	(2)	Same proton number but different neutron number
	(3)	Same proton and neutron number Same proton but different electron number
5.	Max	ximum number of electrons in a shell with principle quantum number 'n' is given
	by: (1)	
6.	Boh (1) (2)	nr model of Hydrogen atom was unable to explain : Rydberg's formula of atomic spectra Heisenberg's uncertainty principle
	(3) (4)	Planck's law of energy quantization Rutherford's model of atomic structure
7.	The (1) (2) (3) (4)	e de Broglie wave length of a particle is : Proportional to its mass Proportional to its velocity Inversely proportional to its momentum Proportional to its total energy
A		з СНЕМ


- 8. At room temperature, for the reaction NH_4SH (s) $\leftrightarrow NH_3(g) + H_2S$ (g):
 - (1) $K_p = K_c$

(2) $K_p > K_c$

(3) $K_p < K_c$

- (4) K_p and K_c do not relate
- **9.** According to Le-Chatelier's principle, the equilibrium constant of a reversible reaction will NOT shift by:
 - (1) Increasing the temperature of an exothermic reaction
 - (2) Increasing the temperature of an endothermic reaction
 - (3) Changing the concentrations of the reactants
 - (4) The effect of a catalyst
- 10. pH of 0.0002 M formic acid $[K_a = 2 \times 10^{-4}]$ approximately is:
 - (1) 1.35
- $(2) \quad 0.5$
- (3) 3.7
- (4) 1.85

- 11. The buffer present in blood plasma is:
 - (1) borax, sodium hydroxide
 - (2) carbonic acid, bicarbonate ion
 - (3) acetic acid, sodium acetate
 - (4) citric acid, potassium dihydrogen phosphate
- 12. Certain reactions follow the relation between concentrations of the reactant vs. time as:

What is the expected order for such reactions?

- (1) 0
- (2) 1
- (3) 2

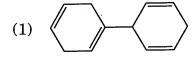
- (4) Infinity
- 13. A first order reaction has a rate constant $k=3.01\times 10^{-3}$ /s . How long it will take to decompose half of the reaction?
 - (1) 2.303 s
- (2) 23.03 s
- (3) 230.3 s
- (4) 2303. s

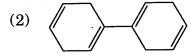
A			5				CHEM
	(3)	zero	(4)	either 1	positive or ne	egative	
	(1)		(2)	negativ	re e		
19.	Ent	tropy of a perfectly crystalline solid	l at 0	K is:			
	(0)				•		
	(3)	filtration	(4)	diffusio	n		
<u>.</u>	(1)	osmosis	(2)	reverse	osmosis		
18.	Des	alination of sea water can be done	by:				
	(3)	•		,		* .	
	(3)	Dalton's law of partial pressure	(4)	Van't H	off factor		
1.6.	(1)	Raoult's law	(2)	Henry's	law		
17.	The	dissolution of a gas in a liquid is g	overi	ned by:			
	(4)	increases the freezing point of the	e solv	ent			No.
	(3)	decreases the boiling point of the					,
	(2)	decreases the vapour pressure of			•		
	(1)	increases the vapour pressure of t		•			
16.	Add	ition of a non-volatile solute in an			olvent:		
	(1)	normal (2) high	(3)	low	(4)	cannot say	
15.	Norr blood time	d 1.06 kg/lit, if a patient sugar lev	vel re	ads 720 j	opm, his/her	blood sugar	at that
		nal human blood sugar range is 6	5 1	05 mg/dI	Considerir	ng density of	`human
	(4)	depends on the height of the poter	ntial l	parrier			
	(3)	does not depend of temperature					
	(2)	increases with increasing tempera	ture			•	
	(1)	decreases with increasing tempera	ature				
14.	The	rate of reactions exhibiting negativ	e act	ivation e	nergy:		•
						-	•

20.	Enthalpy of combustion of carbon to CO ₂ is -393.52 kJ/mol. The heat released upon formation of 11 g of CO ₂ from carbon and dioxygen is:
• .	(1) 35.77 kJ (2) 98.38 kJ (3) 1574.08 kJ (4) 393.52 kJ
21.	Entropy change in a process where 1 Lit. of liq. He is poured into ice cold water is:
	(1) Finite and positive (2) Finite and negative (3) Zero (4) Infinity
22.	For an ideal system at thermal equilibrium, the velocity distribution of the constituting particles will be governed by:
	(1) Gaussian distribution
	(2) Maxwell-Boltzmann distribution
	(3) Lorentzian distribution
	(4) Log-normal distribution
23.	During spontaneous discharge of an electrochemical cell Gibb's free energy will:
	(1) increase (2) decrease (3) not change (4) be infinity
24.	Standard electrode potential of half cell reactions are given below : $Cu^{2+} + 2e^- \rightarrow Cu$; $E^0 = 0.34~V$
	$Zn^{2+} + 2e^- \rightarrow Zn$; $E^0 = -0.76 \text{ V}$
	What is the EMF of the cell?
	(1) $+1.10 \text{ V}$ (2) -1.10 V (3) -0.42 V (4) $+0.42 \text{ V}$
25.	Anode reaction of a fuel cell is:
	(1) $Zn(Hg) + 2OH^- \rightarrow ZnO(s) + H_2O + 2e^-$
	(2) $Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^{-}$
	(3) $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(l) + 4e^-$
	(4) $2\text{Fe}(s) \rightarrow 2\text{Fe}^{2+} + 4\text{e}^{-}$
26.	Molar conductivity decreases with decrease in concentration: (1) for strong electrolytes
	(2) for weak electrolytes(3) both for strong and weak electrolytes
	(4) for non electrolytes

A					7				CHEM
	(3)) I < Br < C	l < F		(4)	Cl < Br	< I < F		
	(1)	_ ~ .			(2)	Cl < F <	Br < I		
33.	\mathbf{T} h	e correct ord	er of e	electron gain e	enthalpy	$(\Delta_{eg} H) \text{ of }$	the haloge	en atoms is:	
•	(4)	rnenoi an	u 10111	ididelly de mo					,
	(3)			naldehyde mol					
	(2)			ldehyde molec	cules				
	(1)			ne molecules					
32.	•			polymerizatio	JII DOUTT				
	-	1 , 1·1 · · · · · · · · · · · · · · · ·	od he	nolymorizatio	on betwe	een:			
	(3)	Maltase			(4)	Diastase			
	(1)	Invertase		•	(2)	Zymase Diastase			
31.	Glu		conver	ted into ethyl					
		· · · · · · · · · · · · · · · · · · ·			_1_1	aina:			
<i>r</i>	(3)	Adsorption			(4)	Oondense			
	(1)	Diffusion			(2) (4)	Condensa			
30.			c ana	lysis is done b		Absorptio			
		, , • • •		1	an hope	the proper	tv of:		•
	(4)	adding app	ropria	te electron ric	n impui	Tues		•	
	(3)			te electron de					
	(2)	decreasing			Cait i	unities			
	(1)	increasing t					•		
29.	Conc			semiconducto	or is inci	reased by:	•		
	(1)	14	(2)	. 8	(3)	6	(4)	4	
8.	Tota	l no. of meta		ns per unit cell				4	•
					_		1. 1. 1.4	•	
	(1)	$[VPT^{-1}n^{-1}]$	(2)	$[\mathrm{VP}^{-1}\mathrm{Tn}^{-1}]$	(3)	[VPTn ⁻¹]	(4)	[VPT-1n]	
7.	Dime	ension of univ	versal	gas constant	(R) is:				

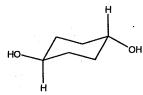
34.	Properties of elements are periodic function of number of ———————————————————————————————————							- present in		
	(1)				(2	()	Electrons			
	(3)	Neutrons		•	(4		Mesons			
					(1	,	141050115			
35.	Pai	ramagnetism	is sho	wn by :						
	(1)	N_2	(2)	· O ₂	(3))	F_2	(4)	CO_2	
36.	The	e hybridizatio	n of Ca	arbon in	molecular	C	O_2 is:			
	(1)	sp	(2)	sp^2	(3))	sp^3	(4)	$\mathrm{sp}^{3}\mathrm{d}$	
37.	The	shape of the	ammo	nia mole	cule is :					•
	(1)	Tetrahedral			(2)		Trigonal pyra	mid		
	(3)	Trigonal bip	yrami	d	(4)		Trigonal plan			*
		•					-	•		•
38.	Whi	ich of the follo		-1 4	1. (1.1.	,				*:
90.	(1)	O the long	(2)	elements S	has the hi		est value of el Se		**	
	. ,		(-)	~	(0)		De .	(4)	Te	
90	(D)	1		_						
39.	(1)	product for re	eaction	ı betweer			acetic anhydr			
	(3)	o-aminoacet p- aminoacet			(2)		m- aminoaceto	phenoi	ne	
	,(-)	p	opiten	10116	(4)	1	Acetanilde		,	
							•	,	÷	
40.	The	order of basic	streng	gth for m	ethyl subs	tit	uted amine in	aqueo	us solutio	n is:
	(1)	$N(CH_3)_3 > N(CH_3)_3$								
	(2) (3)	$N(CH_3)H_2 > 1$								
		$NH_3 > N(CH N(CH_3)_2H > 1$								
		11(0113/211 >)	. v (O113)112 > 1 V (OH3/3 > INF	1 3		•		
11.	The -	nitmatic= (:	•	, •	_					
C.L.		nitration (usi) p-nitroaniline		ation mi						
		m-nitroanilin		*	(2) (4)		-nitroaniline Il the above			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<del></del>	(=/		ar are above	· · · · · ·		
CHE	VI.				8				-	• 🛕

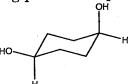

- 42. A compound with nitro group was reduced by Sn/HCl, followed by treatment with NaNO₂/HCl and followed by phenol. The chromophore group in the final compound is:
  - (1) NO₂ group


(2) NH₂ group

(3) Azo group

- (4) OH group
- 43. The correct order for leaving group ability in a nucleophilic substitution reaction is:
  - (1)  $Br^- > Cl^- > CH_3CO_2^- > HO^- > H^-$
  - (2)  $H^- > OH^- > CH_3CO_2^- > Cl^- > Br^-$
  - (3)  $Br^- > CH_3CO_2^- > Cl^- > OH^- > H^-$
  - (4)  $CH_3CO_2^- > Br^- > Cl^- > OH^- > H^-$
- 44. Among the choices of alkyl bromide, the least reactive bromide in a SN₂ reaction is:
  - (1) 1-bromopentane


- (2) 2-bromo-2-methylbutane
- (3) 1-bromo-3-methylbutane
- (4) 1-bromo-2-methylbutane
- **45.** Which is the most stable compound among the following?






(3)

- (4) All the compounds have same stability
- 46. The correct relation between the following pair of compounds is:





- (1) Constitutional isomers
- (2) Enantiomers

(3) Diastereomers

(4) None of these

CHE	EM		10	
	(3)	Propene and isobutene	(4)	Isopropanol and propanol
	(1)	Propionaldehyde and acetone	(2)	Propanol and propionic acid
<b>52.</b>	Toll	ens test can be used to distinguis	sh:	
*				
	(4)	none of these		
	(3)	an unsaturated ketone		
,	(2)	a methyl ketone		
•	(1)	a cyclic ketone		
51.		etone gives a yellow precipitate	e when	treated with $ m I_2$ in an alkaline solution
	(3)	Twist boat conformation	(4)	Chair conformation
	(1)	Boat conformation	(2)	Half chair conformation
<b>50.</b>		ong the following, which is the le		*
	(3)	Racemization	(4)	Mutarotation
	(1)	Retention in configuration	(2)	Inversion in Configuration
49.	2-b	romobutane reacts with OH in l	H ₂ O to	give 2-butanol. The reaction involves :
	(4)	Rate depends on concentration	of inco	ming nucleophile
	(3)	Termolecular		
	(2)	Bimolecular		
	(1)	Unimolecular	,	
48.	A rea	ction is:	on pro	ceeds through SN ₁ mechanism. So, th
	(4)	Chlorine is meta directing grou	ıp and a	also electron withdrawing group
	(3)	Chlorine is meta directing grou		
	(2)	Chlorine is o-p directing group		
	(1)	Chlorine is o-p directing group	,	·
47.	For	a electrophilic aromatic substitu	ition re	eaction:
17	For	a alastrophilis aromatis substitu	ition mo	naction.

A			11	CHEM
	(4)	less difference in electronegativi	ty be	tween B and F
	(2) (3)	lack of d-orbitals in boron		
	(1)	high electronegativity of boron high electronegativity of fluoring	۵	
<b>59.</b>		ron is unable to form BF ₆ ³⁻ because	of:	
			_	
	(3)	$\mathrm{BI_3} > \mathrm{BBr_3} > \mathrm{BCl_3} > \mathrm{BF_3}$	(4)	$BCl_3 > BF_3 > BBr_3 > BI_3$
	(1)	$\mathrm{BF_3} > \mathrm{BCl_3} > \mathrm{BBr_3} > \mathrm{BI_3}$	(2)	$BI_3 > BCl_3 > BBr_3 > BF_3$
<b>58.</b>	The	e correct order of decreasing Lewis	acidi	
	(4)	O-chlorophenol will be formed		
	(3)	Fe ³⁺ will be oxidized to higher st	ate	
	(2)	A colored complex will be formed		
	(1)	No reaction occurs	•	
<b>57.</b>	Wh	en FeCl ₃ is added to phenol?		
•				
	(3)	$(\mathrm{CH_3})_3\mathrm{C}^-\mathrm{Cl}^-$	(4)	Isobutylene
	(1)	No reaction		
JU.			(2)	(CH ₃ ) ₃ C ⁻ Na ⁺
<b>56.</b>	(CF	$(\mathrm{I_3})_3\mathrm{C}-\mathrm{OH}$ on treatment with NaC	l in a	queous medium gives :
	(0)	2 Dationo	\-/	
	(3)	2-butene	(4)	2- pentene
<b>55.</b>	Ant (1)	propene	(2)	butene
e e	A == 4	i-Markownikoff addition of HBr is	not o	bserved in :
	(3)	All Allille	()	The state of the s
	(1) (3)	An Alkyl halide An Amine	(4)	A Carbonyl compound
4		the compound is:	(2)	An Aryl halide
<b>54.</b>			d pre	cipitate with 2,4 dinitrophenylhydrazine,
			,	
	(3)	Trifluoroacetic acid	(4)	Triiodoacetic acid
,	(1)	Dichloroacetic acid	(2)	Dimethylacetic acid
<b>53.</b>	The	strongest acid among the choices i	ıs:	

A

60.	The	e molecule NO is :		
	(1)	Paramagnetic	(2)	Diamagnetic
	(3)	Ferromagnetic	(4)	An even electron molecule
61.	The	e correct order of bond energy is :		
	(1)	$\operatorname{Cl}_2 > \operatorname{Br}_2 > \operatorname{F}_2 > \operatorname{I}_2$	(2)	$Cl_2 > F_2 > Br_2 > I_2$
	(3)	$I_2 > Br_2 > Cl_2 > F_2 \label{eq:l2}$	(4)	$I_2 > Br_2 > F_2 > Cl_2$
	ţ			
<b>62.</b>	$\mathrm{H_{5}I}$	O ₆ is a:		
	(1)	strong reducing agent	(2)	strong base
	(3)	strong oxidizing agent	(4)	weak base
63.	The	complex $[Co(NH_3)_5Br]^{2+}SO_4^{2-}$ and	[Co(	$\mathrm{NH_3})_5\mathrm{SO_4}]^{\scriptscriptstyle +}\mathrm{Br}^{\scriptscriptstyle -}$ are :
	(1)	Coordination isomers	(2)	Linkage isomers
	(3)	Stereoisomers	(4)	Ionization isomers
	•			
		. •		

**64.** The C-H bond distance is the longest in:

(1)  $C_2H_2$ 

(2)  $C_2H_4$ 

(3)  $C_2H_6$ 

 $(4)\quad C_2H_2Br_2$ 

			13		î		CHEM
(1)	0	(2) 1+	(3)	2+	(4)	3+	
The	e most stal	ole oxidation state e	exhibited b	y Thallium	is:		
(3)	${ m Cr_2O_7^{2-}} <$	$MnO_4^{-1} < VO_2^{+1}$	(4)	$MnO_4^- < C$	$\operatorname{Cr}_2\operatorname{O}_7^{2-}<\operatorname{VO}_7$	+ 2	
						- 4	
The	correct or	der of increasing ox	idizing po	wer in the s	eries is :		
(4)	Have no	effect on ozone cond	entration				•
(3)				n			
(2)							
(1)	Are green	n compounds becau	se they are	e green color	red		
CCl	4 and freo	ns:					
			¢				
(3)	Benedict	reagent test	(4)	All the abo	ove		
(1)			(2)		test	•	•
Gluc	cose and fr	ructose can be distir	nguished b	<b>) %</b> %;			
(1)	0	(2) 1.73 BM	(3)	2.85 DW	(4 <i>)</i>	4.9 DM	
•							
			£ [O-F) ]4-	(At No for	Cris 24) is		
(1)	42	(2) 45	(3)	48	(4)	54	
	The (1) Gluck (1) (3) CCl (1) (2) (3) (4) The (1) (3)	The spin only  (1) 0  Glucose and from the correct of the correct	The spin only magnetic moment of (1) 0 (2) 1.73 BM  Glucose and fructose can be disting (1) Lucas test  (3) Benedict reagent test  CCl ₄ and freons:  (1) Are green compounds because (2) Depletes ozone concentration (3) Causes increase in ozone concentration (4) Have no effect on ozone concentration (5) Causes increase in ozone concentration (6) Causes increase in ozone concentration (7) VO ₂ < Cr ₂ O ₇ < MnO ₄ < VO ₂ The most stable oxidation state of the concentration (1) VO ₂ < Cr ₂ O ₇ < MnO ₄ < VO ₂	The spin only magnetic moment of $[CrF_6]^4$ (1) 0 (2) 1.73 BM (3)  Glucose and fructose can be distinguished by (1) Lucas test (2)  (3) Benedict reagent test (4)  CCl ₄ and freons:  (1) Are green compounds because they are (2) Depletes ozone concentration  (3) Causes increase in ozone concentration  (4) Have no effect on ozone concentration  The correct order of increasing oxidizing por (1) $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$ (2)  (3) $Cr_2O_7^{2-} < MnO_4^- < VO_2^+$ (4)  The most stable oxidation state exhibited by (1) 0 (2) 1+ (3)	The spin only magnetic moment of $[CrF_6]^4$ (At. No. for (1) 0 (2) 1.73 BM (3) 2.83 BM Glucose and fructose can be distinguished by:  (1) Lucas test (2) Ninhydrin (3) Benedict reagent test (4) All the above $[CCl_4]$ and freons:  (1) Are green compounds because they are green color (2) Depletes ozone concentration (3) Causes increase in ozone concentration (4) Have no effect on ozone concentration  The correct order of increasing oxidizing power in the second $[CCr_2O_7^2] = [CCr_2O_7^2] = [CCr$	The spin only magnetic moment of $[CrF_6]^{4-}$ (At. No. for Cr is 24) is  (1) 0 (2) 1.73 BM (3) 2.83 BM (4)  Glucose and fructose can be distinguished bys:  (1) Lucas test (2) Ninhydrin test  (3) Benedict reagent test (4) All the above $CCl_4 \text{ and freons:}$ (1) Are green compounds because they are green colored  (2) Depletes ozone concentration  (3) Causes increase in ozone concentration  (4) Have no effect on ozone concentration  The correct order of increasing oxidizing power in the series is:  (1) $VO_2^* < Cr_2O_7^{2-} < MnO_4^-$ (2) $Cr_2O_7^{2-} < VO_2^+ < MnO_4^-$ (3) $Cr_2O_7^{2-} < MnO_4^- < VO_2^+$ (4) $MnO_4^- < Cr_2O_7^{2-} < VO_2^-$ The most stable oxidation state exhibited by Thallium is:  (1) 0 (2) 1+ (3) 2+ (4)	The spin only magnetic moment of $[CrF_6]^{4-}$ (At. No. for Cr is 24) is :  (1) 0 (2) 1.73 BM (3) 2.83 BM (4) 4.9 BM  Glucose and fructose can be distinguished by:  (1) Lucas test (2) Ninhydrin test  (3) Benedict reagent test (4) All the above $CCl_4 \text{ and freons:}$ (1) Are green compounds because they are green colored  (2) Depletes ozone concentration  (3) Causes increase in ozone concentration  (4) Have no effect on ozone concentration  The correct order of increasing oxidizing power in the series is:  (1) $VO_2^* < Cr_2O_7^{2-} < MnO_4^-$ (2) $Cr_2O_7^{2-} < VO_2^* < MnO_4^-$ (3) $Cr_2O_7^{2-} < MnO_4^- < VO_2^-$ (4) $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$ The most stable oxidation state exhibited by Thallium is:  (1) 0 (2) 1+ (3) 2+ (4) 3+

The effective atomic number for  $[Rh(H_2O)_6]^{3+}$  (At. No. for Rh is 45) is :

**65.** 

CHE	M		14		
	(3)	Less than that for Ag ₂ O	(4)	Equal to that for CuO	
	(1)	Greater than that for CuC	(2)	Less than that for CuO	
<b>75.</b>	The	reduction of zinc oxide with	n coke occurs	at temperature:	
	(3)	Roasting of ore in O ₂	(4)	Magnetic separation	
	(1)	Reduction by carbon	(2)	Electrolysis of ore	•
74.	The	first step in the extraction	of Cu from co	opper pyrites is :	
			•		•
	(3)	$CuCO_3.Cu(OH)_2$	(4)	$\mathrm{FeS}_2$	
	(1)	$\mathrm{Fe_3O_4}$	(2)	$\mathrm{ZnCO_3}$	
<b>73.</b>	The	e ore magnetite is :			
			•		
	(3)	CaF ₂ structure	(4)	Na ₂ O structure	
	(1)	NaCl structure	(2)	Fe ₂ O ₃ structure	
72.	The	e crystal structure of solid N	In(II) oxide is	3:	
	•				
	(1)	Cr (2) Cu	(3)	C (4) Ag	
71.		ought iron contains :			

### Space For Rough Work

### Space For Rough Work



CHEM