TA I

NOTE : DO NOT BREAK THE SEAL UNTIL YOU GO THROUGH THE FOLLOWING INSTRUCTIONS

COMMON ENTRANCE TEST - 2012

Question Booklet MATHEMATICS

Roll No.

(Enter your Roll Number in the above space)

Series

 \mathbf{C}

401003

Booklet No.

Time Allowed: 1.30 Hours

Max. Marks: 75

INSTRUCTIONS:

- 1. Use only BLACK or BLUE Ball Pen.
- 2. All questions are COMPULSORY.
- 3. Check the BOOKLET thoroughly.

IN CASE OF ANY DEFECT – MISPRINTS, MISSING QUESTION/S OR DUPLICATION OF QUESTION/S, GET THE BOOKLET CHANGED WITH THE BOOKLET OF THE SAME SERIES. NO COMPLAINT SHALL BE ENTERTAINED AFTER THE ENTRANCE TEST.

- 4. Before you mark the answer, fill in the particulars in the ANSWER SHEET carefully and correctly. Incomplete and incorrect particulars may result in the non-evaluation of your answer sheet by the technology.
- 5. Write the SERIES and BOOKLET NO. given at the TOP RIGHT HAND SIDE of the question booklet in the space provided in the answer sheet by darkening the corresponding circles.
- 6. Do not use any **eraser**, **fluid pens**, **blades** etc., otherwise your answer sheet is likely to be rejected whenever detected.
- 7. After completing the test, candidates are advised to hand over the OMR ANSWER SHEET to the Invigilator and take the candidate's copy with yourself.

(MATHEMATICS)

In a triangle ABC, let $\angle A = \frac{\pi}{2}$ and $(a+b+c)(b+c-a) = \lambda bc$, then λ equals to

Choose the most suitable answer in the following questions:

1.

$\overline{\mathbf{c}}$		•			3			MATH
	to (1)	· ·	(2)	,	(3)		(4)	256
8.	Th	ne coefficient c	of the	term independ	ent of	x in the expan	sion of	$\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^{10}$ is equal
	(1)		(2)		, ,	2^{n-1}		2^{2n}
7.	If	n is an even in	nteger			$C_0 + ^n C_2 + ^n C_4 +$	$\cdots +^n$	C_n equals to
•	(1)	0	(2)	$-\frac{1}{2}$	(3)	1.	(4)	-1
6.	If 2	$A+B+C=\pi$	and si	$\sin C + \sin A \cos A$	B = 0	then $ an A \cdot \cot$	B is e	quals to
*	(1)	$\frac{1}{16}$	(2)	$\frac{1}{8}$	(3)	$\frac{3}{16}$	(4)	$\frac{3}{4}$
5.	If s	$\sin x \cos y = \frac{1}{4}$	and 3	$3\tan x = 4\tan y$	then	$\sin(x-y)$ equa	als to	
	(1)	$\frac{\pi}{4}$	(2)	$\frac{\pi}{6}$	(3)	$\frac{\pi}{3}$	(4)	none of the above
4.		A and B be a lals to	cute a	angles such tha	at sin	$A = \sin^2 B$ and	$2\cos^2$	$A = 3\cos^2 B$. Then A
	(1)	$\frac{1}{5}$	(2)	$\frac{2}{5}$	(3)	$\frac{3}{5}$	(4)	$\frac{4}{5}$
3.		lies in the so al to	econd	quadrant and	3tan	$\theta + 4 = 0$, then	the va	lue of $\sin \theta + \cos \theta$ is
	(1)	4	(2)	5	(3)	$6-\sqrt{6}$	(4)	$5+\sqrt{6}$
2.	In a	triangle, the	e leng then	ths of the two the length of t	large he thi	er sides are 10 rd side can be	and 9	respectively. If the
	(1)	0	(2)	1	(3)	2	(4)	-2

9.	The range of the function $f(x) = \log_a x$, $a > 0$ is										
		(0, ∞)				$(-\infty, \infty)$					
	(3)	$(-\infty, \infty) - \{($)}			none of the	ese				
10.	The	number of p	oints a	at which the	e function	$f(x) = \frac{1}{\log_e }$	$\frac{1}{ x }$ is di	scontin	uous is		
6	(1)		(2)		(3)		(4)				
11.	The	value of $\lim_{x\to 0}$	$\frac{\sin(\pi x)}{x}$	$\frac{\cos^2 x}{2}$ is equal $\cos^2 x$	qual to						
	(1)	$\frac{\pi}{2}$	(2)	π	(3)	$-\pi$	(4)	1			
						٠.	•				
12.	The	function $f(x)$	$=\frac{x}{1+x}$	$\frac{1}{x^2}$ decrease	es in the i	nterval ·					
	(1)	(-∞, -1] ∪ [1, ∞)		(2)	(-1, 1)					
	(3)	$(-\infty, \infty)$		ŧ	(4)	none of thes	ė				
13.	Let ;	$f: \mathbb{R} \to \mathbb{R}$ be 0) = 1, $f'(2)$ =	e a fun 4 and	ction such $f''(1) = 2$,	that the the then $f(x)$	hird derivati	we of $f($	x) van	ishes for	r all x	
		$x^2 + 1$					(4)	$x^2 - 2$	2x+1		
14.	If $f'(f^2(1))$	$f(x) = g(x)$ are $f(x) + g^2(1)$ is eq	d g'(x)	f(x) = -f(x) for x = -f(x)	or all x a	nd $f(1) = 5$,	f'(1) = 4	l, then	the va	lue of	
	(1)	25	(2)	16	(3)	41	(4)	9	1 4		
15.	The d	legree of the	differe	ntial equat	ion satisf	ied by the cu	rves				
				$\frac{1}{x} - a\sqrt{1+y} =$							
	where	e 'a' is a para	meter	is						٠	
	(1)	1	(2)	2	(3)	3	(4)	none o	of the ab	ove	
MATI	Η		<u>.</u>	·	4	7.01		<u> </u>			

16.	The probability that at least one of the events A and B occurs is 0.5. If A and simultaneously with probability 0.2, then $P(A^C) + P(B^C)$ is equal to								
	(1) 1.0	(2) 1.1	(3) 0.7	(4) 1.3					
17.		g table gives the pro		ain computer will malfu	nction				

0, 1, 2, 3, 4, 5 or 6 times on any day:

No. of malfunctions x:	0	1	2	3	4	5	6
Probability $f(x)$:	0.17	0.29	0.27	0.16	0.07	0.03	0.01

Then mean of this probability distribution is

- 1.74 (1)
- 1.80 (2)
- 0.74
- none of these **(4)**

For the married couple living in Jammu, the probability that a husband will vote in 18. an election is 0.5 and the probability that a wife will vote is 0.4. The probability that the husband votes, given that his wife also votes is 0.7. Then the probability that husband and wife both will vote is

- 0.28 (1)
- (2) 0.20
- (3)0.35
- 0.15

Let 19.

$$f(x) = \frac{k}{1+x^2}, -\infty < x < \infty$$

be the probability density of a random variable. Then k equals to

- (1)π
- $(3) \quad \frac{1}{\pi}$

If mean and variable of a binomial variate X are 2 and 1 respectively, then the 20. probability that X takes a value at least one is

- (2) $\frac{3}{16}$ (3) $\frac{5}{16}$

Let A and B be two mutually exclusive events such that $P(A \cap B^C) = 0.25$ and 21. $P(A^C \cap B) = 0.5$. Then $P((A \cup B)^C)$ is equal to

(1)0.25

 \mathbf{C}

- 0.50 (2)
- 0.75(3)
- 0.40 **(4)**

- 22. If the product of n positive real numbers is one, then their sum is
 - (1) $n+\frac{1}{n}$

 $(2) \quad n - \frac{1}{r}$

(3) $2n + \frac{1}{2}$

(4) never less than n

23. The sum of the series

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

is equal to

- (1) 1
- (2)
- (3)

none of these

24. The sum of n terms of the series

$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \cdots$$

is equal to

- (1) $\frac{n^2 2n}{(n+1)^2}$ (2) $\frac{n^2 2}{(n+1)^2}$ (3) $\frac{n^2 + 2n}{(n+1)^2}$
- (4) $\frac{n^2+2}{(n+1)^2}$
- If $^{m+n}P_2 = 90$ and $^{m-n}P_2 = 30$, then (m, n) is given by (m and n are positive integers)**25.**
 - (1) (8, 2)
- (2) (5,6)
- (3) (3, 7)
- (4)(8, 3)
- In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of 5th and 6th term is zero. Then 26. $\frac{a}{b}$ equals to
 - (1) $\frac{n-4}{2}$ (2) $\frac{n-4}{3}$
- $(3) \quad \frac{n-4}{5} \qquad \qquad (4) \quad \frac{n-4}{4}$

- The value of $\tan\left(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3}\right)$ is equal to **27**.
 - (1) $\frac{17}{6}$
- (2) $\frac{22}{15}$
- (3) $\frac{16}{5}$

32.		(2) 1	= 0 is equal to $(3) e$ we $y^2 = 4x$ at which t	(4) -1	
32.			•	(4) -1	•
		dv .	0 :		
	(1) 2	(2) –2	(3) 0		
-	is equal to		(2) 0	(4) 1	
		$\underset{x\to 4}{Lt} \frac{x f(4) - 4 f(4)}{x - 4}$			
31.	If $f: \mathbb{R} \to \mathbb{R}$ be a	a differentiable fu	nction such that $f(4)$ =	= 6 and $f'(4) = 2$,	then
	$(1) 2^{n-1}$	(2) $2n$	(3) n	(4) 2	
	is equal to		(0)	$(4) 2^n$	
		$f(0) + f'(0) + \frac{f''(0)}{2}$	$\frac{(0)}{!}+\cdots+\frac{f^{(n)}(0)}{n!}$		
30.	If $f(x) = (1+x)^n$,	then the value of	$f^{(n)}(0)$		
	(3) $\frac{k}{2} < x(0) < 2k$	k	(4) none of thes	e	
	(1) x(0) < k		(2) x(0) > k		
	is monotonically i	increasing if	•		
,		$\frac{dx}{dt} = r x \left(1 - \frac{x}{k} \right),$	<i>r</i> > 0		
29.	The trajectory of	the differential equ			
±	(1) 0	(2) 1		(4) -1	

7

If A is a skew symmetric matrix of order 3×3 , then determinant of |A| equals to

(4) -1

28.

 \mathbf{C}

34.	Le by	t a line the line	makes an a with z-axi	angle of 6 s is	60° with eac	ch of the	ex and y axes	s. Ther	the angle	: mađe
	(1)	30°	(2)	45°	(3) 60°	(4	1) no	ne of these	;
35.	\hat{i} +	e value $a\hat{j} + \hat{k}$,	of 'a' for $\hat{j} + a \hat{k}$ and	which the $a\hat{i} + \hat{k}$ is	the volume minimum	of par is	allelopiped f	ormed	by the v	ectors
	(1)	$\frac{1}{\sqrt{3}}$	(2)	3 .	(3)	-3	(4) 1		
36.	The	e angle l	between the	e two line	es					
	is		$\frac{2-}{1}$	$\frac{x}{2} = \frac{y}{2} = \frac{y}{2}$	$\frac{z+3}{1}$ and $\frac{x}{1}$	$\frac{x-4}{4} = \frac{y}{4}$	$\frac{-1}{1} = \frac{z-5}{2}$			
	(1)	0°	(2)	90°	(3)	45°	(4)) non	e of these	
37.	If the plan	ne foot o ne is	of perpendic	ular fron	n the origin	to a pla	ane is (1, 2, 3)	, then	equation o	of the
	,	2x-y			(2)	x + y +	-z=6			
	(3)	<i>x</i> – <i>y</i> –	z = -4		(4)	x+2y	+3z = 14			
38.	The is	length	of perpendi	cular fro	m the point	t (1, 0, 1) to the plane	=3x+-	$\sqrt{6}y + 7z + 6$	3 = 0
	(1)	2	(2)	6	(3)	8	(4)	7		
39.	If the	e line $\frac{x}{}$	$\frac{-4}{1} = \frac{y-2}{1}$	$=\frac{z-k}{2}$ li	es in the pl	ane $2x$	-4y+z=5, t	$\mathrm{hen}\ k$ i	s equal to	
			(2)		(3)		(4)	5		P
40.	If <i>A P</i> (<i>A</i>)	and B $\cup B$) eq	be two in	depender	nt events s	uch tha	at $P(A) = \frac{2}{3}$	and P	$P(B) = \frac{1}{5}, \ t$	hen
	(1)	$\frac{1}{15}$	(2)	$\frac{11}{15}$	(3)	$\frac{2}{15}$	(4)	$\frac{13}{15}$		•
MATE	Ŧ				0		1			

- If $iz^3 z^2 + z + i = 0$, then z lies on 41.
 - a circle with centre (0, 0) and radius 1 (1)
 - a circle with centre (1, 0) and radius 1
 - (3) a circle with centre (0, 1) and radius 1
 - a straight line
- If |z|=1 and $w=\frac{z+1}{z-1}$ (where $z\neq 1$), then Re(w) equals to **42.**
- $(1) \quad \frac{1}{|z-1|} \qquad (2) \quad \frac{1}{|z+1|} \qquad (3) \quad \left|\frac{z}{z-1}\right|$
- (4) 0
- If $f(x) = \sin\left(\log\left(\frac{\sqrt{16-x^2}}{2-x}\right)\right)$, then domain of f(x) is equal to
 - (1) (-4, 2) (2) (-4, 4)
- $(3) \quad (-4, 4]$
- (4) [-4, 4]
- The real value of θ for which the expression $\frac{1+i\sin\theta}{1-2i\sin\theta}$ is a real number. 44.
 - (1) $n\pi$, n is an integer

- (2) $2n\pi + \frac{\pi}{2}$, n is an integer
- (3) $2n\pi \frac{\pi}{2}$, n is an integer
- (4) $n\pi + \frac{\pi}{2}$, n is an integer
- Let α and β be the roots of equation **45.**

$$x^2 - (a-2)x - a - 1 = 0$$

then $\alpha^2 + \beta^2$ assumes the least value if

- a = 0(1)
- (2) $\alpha = 1$
- (3) a = -1
- $(4) \quad a=2$

For a real x, the equation 46.

$$e^{\sin x} - e^{-\sin x} - 16 = 0$$

has

- one and only one solution (1)
- four solutions (2)
- infinite number of solutions
- **(4)** no solution

47. The number of distinct real roots of

$$\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} = 0$$

in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is

- (1) 0
- (2) 1
- (3) 2

(4) 4

48. Let a > 0, b > 0 and

$$f(x) = \begin{vmatrix} x & a & a \\ b & x & a \\ b & b & x \end{vmatrix}$$

then which of the following statements is true?

- (1) f(x) has a local minimum at $x = \sqrt{ab}$
- (2) f(x) has a local maximum at $x = \sqrt{ab}$
- (3) f(x) has neither local minimum at $x = \sqrt{ab}$ nor local maximum at $x = \sqrt{ab}$
- (4) none of the above

49. The system of homogeneous equations

$$tx + (t+1)y + (t-1)z = 0$$

(t+1)x+ty+(t+2)z = 0
(t-1)x+(t+2)y+tz = 0

has non-trivial solutions for

- (1) exactly three real values of t
- (2) exactly two real values of t
- (3) exactly one real value of t
- (4) infinite number of values of t

50. Matrix A is such that $A^2 = 2A - I$, where I is the identity matrix, then for $n \ge 2$, A^n is equal to

(1) $2^{n-1}A - (n-1)I$

(2) $2^{n-1}A - I$

(3) nA-(n-1)I

(4) nA-I

51. If A is a matrix of order n, then determinant |-A| is equal to

- (1) |A|
- (2) -|A|
- (3) $(-1)^n |A|$
- (4) n|A|

52 .	The value	of the	integral
<i>04.</i>	THE value	OI UIIC	1110081 41

$$\int_{-\pi/2}^{\pi/2} \sqrt{1-\cos^2\theta} \ d\theta$$

is equal to

- (1) 0
- (2) 1
- (3) 2

(4) -2

$$f(x) = \int_{1}^{x} \sqrt{4-t^2} dt,$$

then real roots of the equation x - f'(x) = 0 are

- (1) ± 1
- (2) $\pm \sqrt{2}$
- (3) 0 and 1
- $(4) \quad \pm 2$

$$f(x) = \log_e(1+x) - \log_e(1-x),$$

then the value of $\int_{-1/2}^{1/2} f(x) dx$ equals to

- (1) 0
- (2) 1

- (3) $\frac{1}{2}$
- (4) $-\frac{1}{2}$

55. Let
$$f:(0,\infty) \to \mathbb{R}$$
 and $F(x) = \int_0^x f(t) \ dt$. If $F(x^2) = x^2(1+x)$, then $f(1)$ equals to

- (1) $\frac{5}{2}$
- (2) 5
- (3) $\frac{2}{5}$
- (4) 2

56. The vectors
$$\vec{a} = \hat{i} + 4\hat{j} - 7\hat{k}$$
, $\vec{b} = \lambda \hat{i} - \hat{j} + 4\hat{k}$ and $\vec{c} = -9\hat{i} + 18\hat{k}$ are coplanar if λ equals to

- (1) 0
- (2) 1
- (3) 2

(4) 3

57. Let
$$\vec{a}$$
 and \vec{b} be two unit vectors such that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are perpendicular to each other, then the angle between \vec{a} and \vec{b} is

- (1) 30°
- (2) 45°
- (3) 60°
- (4) 90°

- 58. Let \mathbb{R} be the set of real numbers and $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2 + 4$. Then $f^{-1}(29)$ equals to
 - (1) ϕ
- (2) $\{5, -5\}$
- $(3) \quad \{4, -4\}$
- (4) $\{2, -2\}$

59. The function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$$

is

(1) one-one and onto

- (2) one-one but not onto
- (3) not one-one but onto
- (4) neither one-one nor onto
- **60.** The sum of the coefficients of the polynomial $(1+x+x^2-4x^3)^{2149}$ is
 - (1) 1
- (2) -1
- (3) 2143
- (4) 2156
- **61.** If z = 1 i, then principal value of arg(z) equals to
 - $(1) \quad -\frac{\pi}{4}$
- (2) $\frac{\pi}{4}$
- $(3) \quad -\frac{7\pi}{4}$
- (4) none of these
- **62.** The number of solutions to the equation $z^2 + \overline{z} = 0$ is equal to
 - (1) 1
- (2) 2
- (3) 3

(4) 4

- **63.** i^{i} (when $i = \sqrt{-1}$) is
 - (1) a purely real number
 - (2) a purely complex number
 - (3) a complex number whose real part is always a negative real number
 - (4) a complex number whose real part is always a positive integer

- The equation of the directrix of the parabola $y^2 + 4x + 4y + 2 = 0$ is 64.

- (2) x = -1 (3) $x = \frac{3}{2}$ (4) $x = \frac{2}{3}$
- Equation of the ellipse having vertices at (±5, 0) and foci at (±4, 0) is 65.
 - (1) $\frac{x^2}{25} + \frac{y^2}{9} = 1$

(2) $\frac{x^2}{25} + \frac{y^2}{16} = 1$

(3) $\frac{x^2}{9} + \frac{y^2}{16} = 1$

- (4) $\frac{x^2}{4} + \frac{y^2}{5} = 1$
- The number of integer values of m, for which the x-co-ordinate of the point of 66. intersection of the lines x + y = 3 and y = 3mx + 1 is also an integer, is
 - (1) 0
- (2)1
- (3) 2

- (4)
- The points (a, 0), (0, b) and (1, -1) are collinear $(a \neq 0, b \neq 0)$ if **67.**
 - b-a=ab(1)

 $(2) \quad a+b=ab$

a-b=ab(3)

- $(4) \quad a+b=-ab$
- If the points (2a, a), (a, 2a) and (a, a) form a triangle of area 32 sq. units, then the 68. centroid of the triangle is
 - (1)(32, 32)
- $(2) \quad (-32, -32) \qquad (3) \quad (3, 3)$
- (4) $\left(\frac{32}{3}, \frac{32}{3}\right)$
- If the curve $x^2 + y^2 2x 2y + 1 = 0$ intersects or touches the co-ordinate axes at 69. A and B, then equation of the straight line joining A and B is
 - $x + y = \sqrt{2}$

(2) x + y = 1

(3) x - y = 1

- $(4) x-y=\sqrt{2}$
- If the system of equations (k+1)x+8y=4k and kx+(k+3)y=3k-1 has infinitely **70.** many solutions, then k is equal to
 - (1)
- (2)
- (3)3

(4) -3

The solution of the differential equation 71.

$$\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^x}{e^{\tan^{-1}x}}, \ y(0) = 1$$

is

(1) $y = e^{x - \tan^{-1} x}$ (3) $y = \tan^{-1} x + 1$

(2) $y = e^x \cdot \tan^{-1} x + 1$ (4) $y = e^{x + \tan^{-1} x}$

- The value of the integral $\int_{0}^{1} x(1-x)^{49} dx$ is equal to 72.
- (2) $\frac{1}{2500}$
- (3) $\frac{10}{490}$

The value of 73.

is equal to

- (1) 0
- (2) 1
- (3) 3

none of these

74. The value of the integral

$$\int \frac{e^x \left(1 + \sin x\right)}{1 + \cos x} \, dx$$

is equal to (k is any constant)

(1) $\log_e |\tan x| + k$

(2) $e^x \tan\left(\frac{x}{2}\right) + k$

(3) $e^x \tan x + k$

- (4) $e^x \log_e |\sec x| + k$
- The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and the x-axis lying in the first **75.** quadrant, is (area in sq. units)
 - (1) 9
- 27
- (3) $\frac{27}{2}$
- (4) .18