DU PhD in informatics IIC

Topic:- DU_J18_PHD_INFO

1) Customers arrive at a one-man barber shop according to a Poisson process with a mean interarrival time of 12 min. Customers spend an average of 10 min in the barber's chair. What is the expected number of customers in the barber shop.

[Question ID = 52631]

- 1. $\frac{3}{1}$ [Option ID = 90517]
- 2. ² [Option ID = 90516]
- 3. 5 [Option ID = 90519]
- 4. [Option ID = 90518]

Correct Answer:-

- ⁵ [Option ID = 90519]
- The mass of a rocket is M and the total mass of the rocket and the fuel is M_0 . The average exhaust velocity of gases ejected from rocket motors is u and the final velocity attained by the rocket after using up all fuel is v. The final velocoti v is proportional to

[Question ID = 52583]

- 1. $\left(\frac{Mu}{M_0}\right)$ [Option ID = 90325]
- 2. $(M_0 M)^{-1}$ [Option ID = 90327]
- 3. $(M M_0)$ [Option ID = 90326]
- 4. $\log \left(\frac{M_0}{M}\right)$ [Option ID = 90324]

Correct Answer:-

- $\log \left(\frac{M_0}{M}\right)$ [Option ID = 90324]
- A signal is carrying data in which one data element is encoded as one signal element (r=1). If the bit rate is 100kbps, what is the average value of the baud rate if c is between 0 and 1.

[Question ID = 52611]

- 1. 50kbaud [Option ID = 90438]
- 2. 10kbaud [Option ID = 90436]
- 3. [Option ID = 90439]
- 4. 20kbaud [Option ID = 90437]

Correct Answer:-

• 50kbaud [Option ID = 90438]

The solution of the differential equation

$$x\frac{dy}{dx} + y = x^4$$

with the boundary condition that y = 1 at x = 1, is

[Question ID = 52618]

$$y = \frac{4x^4}{5} + \frac{4}{5x}$$

$$y = \frac{4x^4}{5} + \frac{4}{5x}$$
1. [Option ID = 90467]

$$y = \frac{4x^4}{5} + \frac{1}{5x}$$
 [Option ID = 90466]

$$y = 5x^4 - 4$$

3. [Option ID = 90464]

$$y = 5x^4 - 4$$
3. [Option ID = 90464]
$$y = \frac{x^4}{5} + \frac{4x}{5}$$
 [Option ID = 90465]

Correct Answer :-

$$y = \frac{4x^4}{5} + \frac{4}{5}$$

Can the following scalar and vector potential describe an electromagnetic field?

$$\phi(\vec{x},t) = 3xyz - 4t, \quad \vec{A}(\vec{x},t) = (2x - \omega t)\hat{i} + (y - 2z)\hat{j} + (z - 2e^{i\omega t})\hat{k}$$

where ω is constant.

[Question ID = 52593]

- Yes, in the Coulomb gauge [Option ID = 90364]
- 2. Yes, provided $\omega=0$ [Option ID = 90366]
- Yes, in the Lorentz gauge [Option ID = 90365]
- 4. Yes , provided $\omega \neq 0$ [Option ID = 90367]

Correct Answer :-

- Yes, in the Lorentz gauge [Option ID = 90365]
- 6) If the standard deviation of the Poisson's distribution is $\sqrt{2}$, the probability for r=2 is

[Question ID = 52623]

1.
$$\frac{8}{e^4}$$
 [Option ID = 90487]

2.
$$\frac{1}{e^2}$$
 [Option ID = 90485]

3.
$$\frac{1}{e}$$
 [Option ID = 90484]

Correct Answer :-

For a step index fiber, the normalized frequency V = 26.6 at a 1300nm wavelength. If the core radius is $25\mu m$. Find out the numerical aperture.

[Question ID = 52610]

1.
$$0.33$$
 [Option ID = 90433]

2.
$$0.11$$
 [Option ID = 90435]

3.
$$0.22$$
 [Option ID = 90432]

4.
$$0.66$$
 [Option ID = 90434]

•
$$0.22$$
 [Option ID = 90432]

The value of c for which $P(X = k) = ck^2$ can serve as the probability function of a random variable X that takes value 0, 1, 2, 3, 4 is

[Question ID = 52624]

1.
$$1/30$$
 [Option ID = 90489]

2.
$$1/40$$
 [Option ID = 90491]

3.
$$1/15$$
 [Option ID = 90488]

4.
$$1/10$$
 [Option ID = 90490]

Correct Answer:-

•
$$1/30$$
 [Option ID = 90489]

An arbitrary vector X is an eigen vector of the matrix

$$A = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & a & 0 \ 0 & 0 & b \end{array}
ight]$$

if
$$(a, b)$$
 is

[Question ID = 52613]

1.
$$(0,1)$$
 [Option ID = 90446]

2.
$$(1,-1)$$
 [Option ID = 90444]

3.
$$(1,0)$$
 [Option ID = 90445]

4.
$$(1,1)$$
 [Option ID = 90447]

Correct Answer :-

•
$$(1,1)$$
 [Option ID = 90447]

LASER are light source which give almost perfectly parallel beam of high intensity. If a 2kW laser beam is concentrated by a lens into sross-sectional area about $10^{-6}cm^2$, then the value of poynting vector is

[Question ID = 52592]

1.
$$2 \times 10^{14} W/m^2$$
 [Option ID = 90363]

2.
$$2 \times 10^{13} W/m^2$$
 [Option ID = 90362]

3.
$$2 \times 10^{12} W/m^2$$
 [Option ID = 90361]

4.
$$^{2} \times 10^{11} W/m^{2}$$
 [Option ID = 90360]

$$2\times 10^{13}W/m^2 \quad \text{[Option ID = 90362]}$$

If the magnetic monopole existed , then which of the following Maxwell's equations will be modified?

[Question ID = 52591]

$$\ \, div\vec{D} = \rho \ \, \\ \mbox{1.} \ \, \mbox{[Option ID = 90356]}$$

$$cur\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 [Option ID = 90359]

$$curec{E}=-rac{\partial ec{B}}{\partial t}$$
 [Option ID = 90357]

Correct Answer :-

$$\begin{tabular}{ll} $div\vec{B}=0$ \\ \hline & [{\rm Option~ID=90358}] \end{tabular}$$

12) Evaluate

$$\int_0^{2\pi} \frac{d\theta}{1 + a\sin\theta}, a^2 < 1.$$

[Question ID = 52622]

1.
$$\frac{2\pi}{\sqrt{1+a^2}}$$
 [Option ID = 90481]

2.
$$\sqrt[n]{1-a^2}$$
 [Option ID = 90482]

Correct Answer :-

$$\frac{2\pi}{\sqrt{1-a^2}}$$
• [Option ID = 90480]

A voltage signal V(t) has the following Fourier transform

$$V(j\omega) = \left\{ \begin{array}{ll} e^{-j\omega d}; & for & |\omega| < 1 \\ 0; & for & |\omega| > 0 \end{array} \right.$$

The energy that would be dissipated in a 1Ω resistor fed from V(t) is

[Question ID = 52609]

1.
$$\frac{\frac{2}{\pi}J}{}$$
 [Option ID = 90428]

2.
$$\frac{1}{\pi}$$
 [Option ID = 90430]

4.
$$\frac{2e^{-2d}}{\pi}$$
 [Option ID = 90429]

Correct Answer:-

•
$$\frac{1}{2\pi}$$
 J [Option ID = 90431]

A particle describe a circle of radius r. The centripetal acceleration of the particle is $4/r^2$. What will be the momentum of the particle?

[Question ID = 52584]

1.
$$\frac{2m}{r}$$
 [Option ID = 90328]

2.
$$\frac{4m}{\sqrt{r}}$$
 [Option ID = 90330]

3.
$$\frac{2m}{\sqrt{r}}$$
 [Option ID = 90329]

4.
$$\sqrt{r}$$
 [Option ID = 90331]

•
$$\frac{2m}{\sqrt{r}}$$
 [Option ID = 90329]

The equation $x^3 + 4x - 9 = 0$ needs to be numerically solved using the Newton-Raphson method. The iterative equation for this purpose is

[Question ID = 52629]

1. [Option ID = 90511]
$$x_{k+1} = \frac{3x_k^2 + 4}{2x_k^2 + 9}$$
 [Option ID = 90509]

$$x_{k+1} = rac{2x_k^3 + 9}{3x_k^2 + 4}$$
 [Option ID = 90508]

$$x_{k+1} = x_k - 3x_k^2 + 4 \\ \text{[Option ID = 90510]}$$

Correct Answer :-

$$x_{k+1} = \frac{2x_k^3 + 9}{3x_k^2 + 4}$$
 [Option ID = 90508]

The ratio of the reverse resistance to the forward resistance of a good solid-state diode is about

[Question ID = 52599]

1.
$$1:10$$
 [Option ID = 90389]

2.
$$10:1$$
 [Option ID = 90388]

3.
$$1:100$$
 [Option ID = 90390]

4.
$$1:1000$$
 [Option ID = 90391]

Correct Answer:-

•
$$1:1000$$
 [Option ID = 90391]

During execution, OP code of an instruction is stored in the

[Question ID = 52602]

- 1. general purpose register [Option ID = 90400]
- instruction register [Option ID = 90402]
- 3. accumulator registor [Option ID = 90401]
- 4. temporary register [Option ID = 90403]

Correct Answer:-

instruction register [Option ID = 90402]

18)

Find the complimentary function

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{3x}$$

[Question ID = 52616]

1.
$$(x^2-1)e^{3x}$$
 [Option ID = 90459]

2.
$$xe^{3x} - 1$$
 [Option ID = 90457]

$$e^{3x} + e2x$$

$$e^{3x} + e2x$$
3. [Option ID = 90456]

4.
$$(x-1)e^{3x}$$
 [Option ID = 90458]

Correct Answer :-

•
$$(x-1)e^{3x}$$
 [Option ID = 90458]

19) When an 8 bit serial in / serial out register is used for a $24\mu s$ tme delay, the clock frequency must be

[Question ID = 52604]

1.
$$8MHz$$
 [Option ID = 90411]

2.
$$41.67kHz$$
 [Option ID = 90408]

3.
$$333kHz$$
 [Option ID = 90409]

4.
$$\frac{125kHz}{}$$
 [Option ID = 90410]

Correct Answer :-

$$\bullet \quad \begin{array}{c} 333kHz \\ \text{[Option ID = 90409]} \end{array}$$

20) Evaluate

$$\int_{c} \frac{e^{iz}}{z^{3}} dz,$$

where c is the circle |z| = 2.

[Question ID = 52621]

1.
$$-i\pi$$
 [Option ID = 90478]

2.
$$2i\pi$$
 [Option ID = 90479]

3.
$$i\pi$$
 [Option ID = 90477]

4.
$$\pi$$
 [Option ID = 90476]

Correct Answer :-

•
$$-i\pi$$
 [Option ID = 90478]

$$x\frac{dy}{dx} - y = (x - 1)e^x.$$

[Question ID = 52615]

$$\frac{x}{y} = \frac{e^x}{x} + c, \quad c = const.$$
 [Option ID = 90452]

$$\frac{y}{x} = \frac{e^x}{x} + c, \quad c = const.$$
 [Option ID = 90453]

$$\frac{x}{y}=-\frac{e^x}{x}+c, \quad c=const.$$
 [Option ID = 90454]

$$\frac{y}{x} = \frac{e^x}{x^2} + c, \quad c = const.$$

[Option ID = 90455]

Correct Answer :-

$$\frac{y}{x} = \frac{e^x}{x} + c, \quad c = const. \quad \text{[Option ID = 90453]}$$

22) The eigen values of the matrix

$$A = \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right]$$

are

[Question ID = 52614]

1.
$$e^{\pm \theta}$$
 [Option ID = 90450]

2.
$$e^{-\theta}$$
 [Option ID = 90451]

3.
$$e^{\pm i\theta}$$
 [Option ID = 90449]

4.
$$e^{\theta}$$
 [Option ID = 90448]

Correct Answer :-

•
$$e^{\pm i\theta}$$
 [Option ID = 90449]

23) Consider the following assembly language program

MOV A, B

START: JMP NEXT

MVI B, 00H

XRA

OUT PORT 1

NEXT: XRA B

> JP START 1 PORT 2 OUT

HLT

[Question ID = 52608]

infinite looping of the program execution with accumulator data alternaing between 00H

[Option ID = 90427]

2. an output of 87H at PORT 2 [Option ID = 90425]

an output of 87H at PORT 1 [Option ID = 90424]

infinite looping of the program execution with accumulator data remaining at 00H

[Option ID = 90426]

Correct Answer :-

an output of 87H at PORT 2 [Option ID = 90425]

24) The contribution of Coulomb energy in the sem-empirical mass formula of a nucleus of mass number A and atomic number Z is of the form (a is a constant)

[Question ID = 52596]

1.
$$\frac{aZ(Z+1)}{A}$$
 [Option ID = 90377]

2.
$$\frac{aZ(Z-1)}{A}$$
 [Option ID = 90378]

3.
$$\frac{aZ(Z+1)}{2A}$$
 [Option ID = 90379]

4.
$$aZA^{2/3}$$
 [Option ID = 90376]

•
$$\frac{aZ(Z-1)}{A}$$
 [Option ID = 90378

The following programme is run on an 8085 microprocessor

2000 LXI SP , 1000 2003 PUSH H 2004 PUSH D 2005 CALL 2050 2008 POP 2050 2009 HIT

As the completion of execution of the program , the program counter of the 8085 contains 2056, and the stack pointer contains......

[Question ID = 52606]

- 1. $\frac{2251, \text{ OFFC}}{1}$ [Option ID = 90417]
- 2. 1025, OCCF [Option ID = 90418]
- 3. 2050, OFFC [Option ID = 90416]
- 4. 1025 [Option ID = 90419]

Correct Answer :-

- 2050, OFFC [Option ID = 90416]
- 26) When a transistor amplifier having current gain of 75 is given an input signal

$$V_i = 2\sin\left(157t + \frac{\pi}{2}\right),$$

the output signal is found to be

$$V_0 = 200\sin\left(157t + \frac{3\pi}{2}\right).$$

The transistor is connected as

[Question ID = 52600]

- a common base amplifier
 [Option ID = 90393]
- a common collector amplifier
 2. [Option ID = 90392]
- a oscillator
- [Option ID = 90395]
- 4. a common emitter amplifier [Option ID = 90394]

Correct Answer :-

- a common emitter amplifier [Option ID = 90394]
- 27) If a group is defined as

$$a*b=a+b-1$$

then inverse of the group is

[Question ID = 52630]

- 1. a [Option ID = 90512]
- 2. 1-a [Option ID = 90513]

3.
$$2-a$$
 [Option ID = 90514]

4.
$$a-5$$
 [Option ID = 90515]

$$\bullet \quad 2-a \quad \text{[Option ID = 90514]}$$

A 10MHz clock frequency is applied in cascaded counter consisting of a modulus counter , a modulus-8 counter , and two two modulus-10 counters. The lowest output frequency possible is

[Question ID = 52603]

1.
$$5kHz$$
 [Option ID = 90406]

2.
$$\frac{25kHz}{}$$
 [Option ID = 90407]

3.
$$2.5kHz$$
 [Option ID = 90405]

4.
$10kHz$
 [Option ID = 90404]

Correct Answer:-

•
$$25kHz$$
 [Option ID = 90407]

The equation of motion of a bead sliding on a uniform rod rotating in a force free space is

[Question ID = 52585]

1.
$$\ddot{r}-r\dot{r}\omega=0$$
 [Option ID = 90332]

2.
$$\ddot{r}-\dot{r}\omega=0$$
 [Option ID = 90334]

3.
$$\ddot{r}-r\omega^2=0$$
 [Option ID = 90333]

4.
$$\ddot{r}-\dot{r}\omega+r\omega^2=0$$
 [Option ID = 90335]

Correct Answer :-

A particle is described by a wavefunction $\psi(x) = e^{|x|}$ in one dimension. What is the probability that it will be found in the region $|x| \le a$, a > 0?

[Question ID = 52595]

1.
$$1 - e^{-2a}$$
 [Option ID = 90375]

2.
$$e^{-a}$$
 [Option ID = 90372]

3.
$$1 - e^{-a}$$
 [Option ID = 90373]

4.
$$e^{-2a}$$
 [Option ID = 90374]

Correct Answer:-

$$\qquad \qquad 1-e^{-2a} \quad \text{[Option ID = 90375]}$$

The wavefunction in the ground state of H-atom is given by $\psi = \sqrt{\frac{1}{\pi a^3}} e^{-r/a}$. Find the average value of r.

[Question ID = 52594]

1.
$$0$$
 [Option ID = 90368]

2.
$$\frac{3}{2}a$$
 [Option ID = 90369]

3.
$$\frac{a}{2}$$
 [Option ID = 90370]

4.
$$\frac{5}{2}a$$
 [Option ID = 90371]

•
$$\frac{3}{2}a$$
 [Option ID = 90369]

The correct sequence of the band -gaps of germanium (E_{g1}) , silicon (E_{g2}) and gallium are senide (E_{g3}) will be

[Question ID = 52597]

1.
$$E_{g1} < E_{g2} < E_{g3}$$
 [Option ID = 90381]

$$E_{g2} < E_{g1} < E_{g3} \ \ \mbox{[Option ID = 90382]} \label{eq:eq:eg2}$$
 2.

$$E_{g2} > E_{g1} > E_{g3} \label{eq:eq:eg3} \ensuremath{\text{[Option ID = 90383]}}$$

 3.

4.
$$E_{g1} > E_{g2} > E_{g3}$$
 [Option ID = 90380]

Correct Answer:-

$$E_{g2} < E_{g1} < E_{g3} \ \ \mbox{[Option ID = 90382]} \label{eq:eq:eg3}$$

33) The Lagrangian of a particle of mass m moving in a plane is given by

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + a(x\dot{y} + y\dot{x})$$

The canonical momenta are given by

[Question ID = 52586]

$$p_x = m\dot{x} - ay, p_y = m\dot{y} + ax \label{eq:px}$$
 [Option ID = 90338]

$$p_x = m\dot{x} - ay, p_y = m\dot{y} - ax \quad \text{[Option ID = 90339]}$$

$$p_x = m\dot{x} + ay, p_y = m\dot{y} + ax$$
 [Option ID = 90337]

$$p_x = m\dot{x}, p_y = m\dot{y}$$
 [Option ID = 90336]

Correct Answer :-

$$p_x = m\dot{x} + ay, p_y = m\dot{y} + ax \label{eq:px}$$
 [Option ID = 90337]

Magnetic field in a region is $\vec{\bf B}=\beta t\hat{z}$, the induced electric field due to this time varying magnetic field is

[Question ID = 52590]

1.
$$\beta r(\hat{\phi})$$
 [Option ID = 90354]

2.
$$(-\hat{\phi})$$
 [Option ID = 90353]

4.
$$\beta r(-\hat{\phi})$$
 [Option ID = 90355]

$$\oint_{\frac{\beta}{2}} r(-\hat{\phi})$$
• [Option ID = 90353]

The transition probability matrix of a Markov chain X_n , $n = 1, 2, 3, \cdots$ having 3 states 1, 2 and 3 is

$$P = \left[\begin{array}{ccc} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{array} \right]$$

and the initial distribution is p(0) = (0.7, 0.2, 0.1). Find $P(X_2 = 3)$

[Question ID = 52625]

1.
$$0.0046$$
 [Option ID = 90495]

2.
$$0.012$$
 [Option ID = 90493]

3.
$$0.279$$
 [Option ID = 90492]

4.
$$0.0048$$
 [Option ID = 90494]

Correct Answer :-

•
$$0.279$$
 [Option ID = 90492]

The Lagrangian for an harmonic oscillator is given by $L = \frac{1}{2}\dot{x}^2 - \frac{\omega^2 x^2}{2} - \alpha x^3$. Find the Hamiltonian.

[Question ID = 52587]

$$H = -\frac{1}{2}\dot{x}^2 - \frac{\omega^2 x^2}{2} - \alpha x^3$$
 [Option ID = 90341]
$$H = \frac{1}{2}\dot{x}^2 - \frac{\omega^2 x^2}{2} + \alpha x^3$$
 [Option ID = 90342]
$$H = \frac{1}{2}\dot{x}^2 + \frac{\omega^2 x^2}{2} + \alpha x^3$$
 [Option ID = 90343]

$$H = \frac{1}{2}\dot{x}^2 - \frac{\omega^2 x^2}{2} + \alpha x^3$$
 [Option ID = 90342]

$$H = \frac{1}{2}\dot{x}^2 + \frac{\omega^2 x^2}{2} + \alpha x^3$$
 [Option ID = 90343]

3. [Option ID = 90343]
$$H = \frac{1}{2}\dot{x}^2 - \frac{\omega^2 x^2}{2} - \alpha x^3$$
 [Option ID = 90340]

Correct Answer :-

$$H=\tfrac{1}{2}\dot{x}^2-\tfrac{\omega^2x^2}{2}+\alpha x^3 \quad \text{[Option ID = 90342]}$$

37) The polynomial $2x^2 + x + 3$ in terms of Legendre's polynomial is

[Question ID = 52617]

1.
$$\frac{1}{3}[4P_2 - 3P_1 - 11P_0]$$
 [Option ID = 90461]

2.
$$\frac{1}{3}[4P_2 + 3P_1 - 11P_0]$$
 [Option ID = 90460]

3.
$$\frac{\frac{1}{3}[4P_2-3P_1+11P_0]}{\text{[Option ID = 90462]}}$$

$$\frac{1}{3}[4P_2 + 3P_1 + 11P_0]$$
 [Option ID = 90463]

Correct Answer :-

38) In an n-type semiconductor , the Fermi level lies 0.3eV below the conduction band at 300K. If the temperature is increased to 330K, where does the new position of the Fermi level

[Question ID = 52598]

- 0.44eV below the conduction band $$\left[\text{Option ID = 90385} \right]$$
- 0.55eV below the conduction band [Option ID = 90384]
- 0.27eV below the conduction band $$\left[\text{Option ID} = 90387 \right] $$

4. 0.33eV below the conduction band [Option ID = 90386]

Correct Answer :-0.27eV below the conduction band [Option ID = 90387]

39) For what values of m and n does the complete bipartite graph $K_{m,n}$ have an Euler circuit.

[Question ID = 52628]

1. m, n are both even integers respectively. [Option ID = 90505]

2. m, n are even and odd integers respectively. [Option ID = 90504]

3. m, n are both non integers respectively. [Option ID = 90507]

4. [Option ID = 90507]

5. m, n are both odd integers respectively. [Option ID = 90506]

Correct Answer :-m, n are both even integers respectively. [Option ID = 90505]

40) The minimum number of resisters required in a 4 bit D/A network of weighted -resister type is

[Question ID = 52605]

1. 15 [Option ID = 90414]

2. 4 [Option ID = 90412]

3. 16 [Option ID = 90415]

4. 8 [Option ID = 90413]

Correct Answer:-

• 16 [Option ID = 90415]

41) The number of edges in a bipartite graph with n vertices is at most

[Question ID = 52627]

1. $\frac{n(n-1)}{2}$ [Option ID = 90501]

2. [Option ID = 90502]

3. [Option ID = 90503]

4. $\frac{n^2}{2}$ [Option ID = 90500]

Correct Answer :-

• $\frac{n^2}{2}$ [Option ID = 90500]

In a microprocessor, the resister which holds the address of the next instruction to be fetched is

[Question ID = 52607]

program counter
1. [Option ID = 90421]

2. instructor register [Option ID = 90423]

```
3. accumulator [Option ID = 90420]
```

program counter

[Option ID = 90421]

The equation of motion for a small particle of mass m at position x is $m\ddot{x} + \gamma\dot{x} - mg = 0$. Assuming initial speed to be v_0 , the terminal speed of particle will be

[Question ID = 52588]

1.
$$\sqrt{v_0 + 2gx}$$
 [Option ID = 90345]

2.
$$\frac{mg}{\gamma^2 t}$$
 [Option ID = 90347]

3.
$$v_0 + gt$$
 [Option ID = 90346]

4.
$$\frac{mg}{\gamma}$$
 [Option ID = 90344]

Correct Answer:-

•
$$\frac{mg}{\gamma}$$
 [Option ID = 90344]

An object of mass m moving with a velocity v is approaching a seond object of the same mass but at rest. The total kinetic energy of the two onjects as viewed from the centre of mass

[Question ID = 52582]

1.
$$mv^2$$
 [Option ID = 90320]

2.
$$\frac{1}{4}mv^2$$
 [Option ID = 90322]

3.
$$\frac{1}{8}mv^2$$
 [Option ID = 90323]

4.
$$\frac{1}{2}mv^2$$
 [Option ID = 90321]

Correct Answer:

•
$$\frac{1}{2}mv^2$$
 [Option ID = 90321]

Suppose that customers arrive at a bank according to a Poisson process with a mean rate of 3 per minute; find the probability that during a time interval of 2 min, exactly 4 customers arrive.

[Question ID = 52626]

1.
$$0.266$$
 [Option ID = 90497]

2.
$$0.133$$
 [Option ID = 90498]

3.
$$0.150$$
 [Option ID = 90496]

4.
$$0.715$$
 [Option ID = 90499]

Correct Answer:-

•
$$0.133$$
 [Option ID = 90498]

46) If
$$f(x)=\left\{ egin{array}{ll} x & if & -\pi/2 < x < \pi/2 \\ \pi-x & if & \pi/2 < x < 3\pi/2 \end{array}
ight.$$
 , then a_0 is equal to

[Question ID = 52619]

1.
$$\pi$$
 [Option ID = 90469]

2.
$$0$$
 [Option ID = 90468]

3.
$$-\pi$$
 [Option ID = 90470]

4.
$$2\pi$$
 [Option ID = 90471]

•
$$0$$
 [Option ID = 90468]

$$A = \left[\begin{array}{ccc} 4 & 3 & 3 \\ -1 & 0 & -1 \\ -4 & -4 & -3 \end{array} \right]$$

is

[Question ID = 52612]

Correct Answer:-

In Boolean algebra , $\overline{(A+\overline{B}).C}$ will be equal to

[Question ID = 52601]

1.
$$(\overline{A}.B) + \overline{C}$$
 [Option ID = 90396]

2.
$$(A.\overline{B}) + C$$
 [Option ID = 90397]

3.
$$A + \overline{B} + C$$
 [Option ID = 90399]

4.
$$(A.B) + \overline{C}$$
 [Option ID = 90398]

Correct Answer :-

$$\bullet \quad (A.B) + \overline{C} \quad \text{[Option ID = 90398]}$$

49) Laplace transform of $\{e^{-2t} - e^{-3t}\}$ is

[Question ID = 52620]

$$-\frac{1}{s^2+5s+6}$$
1. [Option ID = 90475]

2.
$$\frac{1}{s^2+3s+6}$$
 [Option ID = 90472]

$$-\frac{1}{s^2+3s+6}$$
 [Option ID = 90473]

•
$$\frac{1}{s^2 + 5s + 6}$$
 [Option ID = 90474]

A constant current I is flowing through a cylindrical conductor. The direction of poynting vector is

[Question ID = 52589]

1.
$$\hat{z}$$
 [Option ID = 90348]

2.
$$-\hat{r}$$
 [Option ID = 90350]

3.
$$\hat{r}$$
 [Option ID = 90351]

4.
$$\hat{\phi}$$
 [Option ID = 90349]

•
$$-\hat{r}$$
 [Option ID = 90350]